Cargando…

Batch Process Monitoring Based on Quality-Related Time-Batch 2D Evolution Information

This paper proposed a quality-related online monitoring strategy based on time and batch two-dimensional evolution information for batch processes. In the direction of time, considering the difference between each phase and the steady part and the transition part in the same phase, the change trend...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Luping, Yang, Jiayang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954576/
https://www.ncbi.nlm.nih.gov/pubmed/35336405
http://dx.doi.org/10.3390/s22062235
Descripción
Sumario:This paper proposed a quality-related online monitoring strategy based on time and batch two-dimensional evolution information for batch processes. In the direction of time, considering the difference between each phase and the steady part and the transition part in the same phase, the change trend of the regression coefficient of the PLS model is used to divide each batch into phases, and each phase into parts. The phases, the steady parts, and the transition parts are finally distinguished and dealt with separately in the subsequent modeling process. In the batch direction, considering the slow time-varying characteristics of batch evolution, sliding windows are used to perform mode division by analyzing the evolution trend of the score matrix T in the PLS model on the base of phase division and within-phase part division. Finally, an online monitoring model that comprehensively considers the evolution information of time and batch is obtained. In a typical batch operation process, injection molding is used as an example for experimental analysis. The results show that the proposed algorithm takes advantage of mixing the time-batch two-dimensional evolution information. Compared with the traditional methods, the proposed method can overcome the shortcomings caused by the single dimension analysis and has better monitoring results.