Cargando…
Neoexpression of JUNO in Oral Tumors Is Accompanied with the Complete Suppression of Four Other Genes and Suggests the Application of New Biomarker Tools
Background. Our study describes the neoexpression (Juno) and suppression (catsperD, dysferlin, Fer1L5 and otoferlin) of selected genes in oral squamous cell carcinomas (OSCCs). As the expression pattern of these genes allows a “yes” or “no” statement by exhibiting an inverse expression pattern in ma...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954609/ https://www.ncbi.nlm.nih.gov/pubmed/35330493 http://dx.doi.org/10.3390/jpm12030494 |
Sumario: | Background. Our study describes the neoexpression (Juno) and suppression (catsperD, dysferlin, Fer1L5 and otoferlin) of selected genes in oral squamous cell carcinomas (OSCCs). As the expression pattern of these genes allows a “yes” or “no” statement by exhibiting an inverse expression pattern in malignant versus benign tissues, they represent potential biomarkers for the characterization of oral malignancies, particularly OSCCs. Methods. Differential expression analyses of selected genes of interest were examined by quantitative PCR of oral cancer tissues compared to normal. Results. Five candidates out of initially nine genes were examined, demonstrating Juno as a putative new tumor marker selectively expressed in OSCCs. Interestingly, the expression of four other genes in benign tissues was completely repressed in tumor tissues with a specificity and sensitivity of 100%. No correlation was observed regarding patients’ sex, tumor staging and grading, and tumor site. Conclusion. The present study shows novel candidates that might be useful tools for oral cancer diagnosis. The neoexpression of Juno in cancerous tissues makes it a promising target molecule regarding its potential in diagnosis as well a therapeutic tool. Moreover, our observations suggest that also the repression of gene expression can be used for diagnosing—at least—OSCCs. |
---|