Cargando…

New Insights from the High-Resolution Monitoring of Microalgae–Virus Infection Dynamics

Investigation of virus-induced microalgal host lysis and the associated infection dynamics typically requires sampling of infected cultures at multiple timepoints, visually monitoring the state of infected cells, or determining virus titration within the culture media. Such approaches require intens...

Descripción completa

Detalles Bibliográficos
Autores principales: Schiano di Visconte, Gino, Allen, Michael J., Spicer, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954724/
https://www.ncbi.nlm.nih.gov/pubmed/35336873
http://dx.doi.org/10.3390/v14030466
Descripción
Sumario:Investigation of virus-induced microalgal host lysis and the associated infection dynamics typically requires sampling of infected cultures at multiple timepoints, visually monitoring the state of infected cells, or determining virus titration within the culture media. Such approaches require intensive effort and are prone to low sensitivity and high error rates. Furthermore, natural physiological variations can become magnified by poor environmental control, which is often compounded by variability in virus stock efficacy and relatively long infection cycles. We introduce a new method that closely monitors host health and integrity to learn about the infection strategy of Chloroviruses. Our approach combines aspects of spectrometry, plaque assays, and infection dose assessment to monitor algal cells under conditions more representative of the natural environment. Our automated method exploits the continuous monitoring of infected microalgae cultures in highly controlled lab-scale photobioreactors that provide the opportunity for environmental control, technical replication, and intensive culture monitoring without external intervention or culture disruption. This approach has enabled the development of a protocol to investigate molecular signalling impacting the virus life cycle and particle release, accurate determination of virus lysis time under multiple environmental conditions, and assessment of the functional diversity of multiple virus isolates.