Cargando…

Microbial Transformation and Biological Activities of the Prenylated Aromatic Compounds from Broussonetia kazinoki

Broussonetia kazinoki has been used as a traditional medicine for the treatment of burns and acne, and its extracts have been found to show tyrosinase inhibitory and anticancer activities. In this study, the tyrosinase inhibitory and cytotoxic activities of B. kazinoki were explored, leading to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, EunA, Han, Fubo, Park, Jisu, Lee, Ik-Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954733/
https://www.ncbi.nlm.nih.gov/pubmed/35335241
http://dx.doi.org/10.3390/molecules27061879
Descripción
Sumario:Broussonetia kazinoki has been used as a traditional medicine for the treatment of burns and acne, and its extracts have been found to show tyrosinase inhibitory and anticancer activities. In this study, the tyrosinase inhibitory and cytotoxic activities of B. kazinoki were explored, leading to the isolation of kazinol C (1), kazinol E (2), kazinol F (3), broussonol N (4), and kazinol X (5), of which the compounds 4 and 5 have not been previously reported. Microbial transformation has been recognized as an efficient tool to generate more active metabolites. Microbial transformation of the major compounds 1 and 3 was conducted with Mucor hiemalis, where four glucosylated metabolites (6–9) were produced from 1, while one hydroxylated (10) and one glucosylated (11) metabolites were obtained from 3. Structures of the isolated metabolites were determined by extensive spectroscopic analyses. All compounds were evaluated for their tyrosinase inhibitory and cytotoxic activities. Compound 3 and its metabolites, kazinol Y (10) and kazinol F-4″-O-β-d-glucopyranoside (11), exhibited the most potent tyrosinase inhibitory activities with the IC(50) values ranging from 0.71 to 3.36 µM. Meanwhile, none of the metabolites, except for kazinol C-2′,3″-di-O-β-d-glucopyranoside (7), showed moderate cytotoxic activities (IC(50) 17.80 to 24.22 µM) against A375P, B16F10 and B16F1 cell lines.