Cargando…
Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host–Pathogen Interactions during Infection
Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate ov...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954776/ https://www.ncbi.nlm.nih.gov/pubmed/35330266 http://dx.doi.org/10.3390/jof8030264 |
_version_ | 1784676177193992192 |
---|---|
author | Ortiz, Sébastien C. Pennington, Katie Thomson, Darren D. Bertuzzi, Margherita |
author_facet | Ortiz, Sébastien C. Pennington, Katie Thomson, Darren D. Bertuzzi, Margherita |
author_sort | Ortiz, Sébastien C. |
collection | PubMed |
description | Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against Aspergillus species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of A. fumigatus pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host–pathogen interactions that lead to aspergillosis. |
format | Online Article Text |
id | pubmed-8954776 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89547762022-03-26 Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host–Pathogen Interactions during Infection Ortiz, Sébastien C. Pennington, Katie Thomson, Darren D. Bertuzzi, Margherita J Fungi (Basel) Review Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against Aspergillus species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of A. fumigatus pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host–pathogen interactions that lead to aspergillosis. MDPI 2022-03-04 /pmc/articles/PMC8954776/ /pubmed/35330266 http://dx.doi.org/10.3390/jof8030264 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Ortiz, Sébastien C. Pennington, Katie Thomson, Darren D. Bertuzzi, Margherita Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host–Pathogen Interactions during Infection |
title | Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host–Pathogen Interactions during Infection |
title_full | Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host–Pathogen Interactions during Infection |
title_fullStr | Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host–Pathogen Interactions during Infection |
title_full_unstemmed | Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host–Pathogen Interactions during Infection |
title_short | Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host–Pathogen Interactions during Infection |
title_sort | novel insights into aspergillus fumigatus pathogenesis and host response from state-of-the-art imaging of host–pathogen interactions during infection |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954776/ https://www.ncbi.nlm.nih.gov/pubmed/35330266 http://dx.doi.org/10.3390/jof8030264 |
work_keys_str_mv | AT ortizsebastienc novelinsightsintoaspergillusfumigatuspathogenesisandhostresponsefromstateoftheartimagingofhostpathogeninteractionsduringinfection AT penningtonkatie novelinsightsintoaspergillusfumigatuspathogenesisandhostresponsefromstateoftheartimagingofhostpathogeninteractionsduringinfection AT thomsondarrend novelinsightsintoaspergillusfumigatuspathogenesisandhostresponsefromstateoftheartimagingofhostpathogeninteractionsduringinfection AT bertuzzimargherita novelinsightsintoaspergillusfumigatuspathogenesisandhostresponsefromstateoftheartimagingofhostpathogeninteractionsduringinfection |