Cargando…
Improving Semantic Segmentation of Urban Scenes for Self-Driving Cars with Synthetic Images
Semantic segmentation of an incoming visual stream from cameras is an essential part of the perception system of self-driving cars. State-of-the-art results in semantic segmentation have been achieved with deep neural networks (DNNs), yet training them requires large datasets, which are difficult an...
Autores principales: | Ivanovs, Maksims, Ozols, Kaspars, Dobrajs, Artis, Kadikis, Roberts |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955070/ https://www.ncbi.nlm.nih.gov/pubmed/35336422 http://dx.doi.org/10.3390/s22062252 |
Ejemplares similares
-
Semantic segmentation of autonomous driving scenes based on multi-scale adaptive attention mechanism
por: Liu, Danping, et al.
Publicado: (2023) -
A3CarScene: An audio-visual dataset for driving scene understanding
por: Cantarini, Michela, et al.
Publicado: (2023) -
Crowd Counting with Semantic Scene Segmentation in Helicopter Footage
por: Csönde, Gergely, et al.
Publicado: (2020) -
Real-Time Semantic Segmentation for Fisheye Urban Driving Images Based on ERFNet †
por: Sáez, Álvaro, et al.
Publicado: (2019) -
Mathematical Model and Synthetic Data Generation for Infra-Red Sensors
por: Leja, Laura, et al.
Publicado: (2022)