Cargando…
Functional Morphology of the Thorax of the Click Beetle Campsosternus auratus (Coleoptera, Elateridae), with an Emphasis on Its Jumping Mechanism
SIMPLE SUMMARY: Click beetles are well-known for the specialized thoracic structure, which they can click to thrust themselves into the air and to right themselves. Several aspects of their jumping mechanism were still not entirely clear prior to this study. We utilized traditional dissection, 3D vi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955093/ https://www.ncbi.nlm.nih.gov/pubmed/35323546 http://dx.doi.org/10.3390/insects13030248 |
Sumario: | SIMPLE SUMMARY: Click beetles are well-known for the specialized thoracic structure, which they can click to thrust themselves into the air and to right themselves. Several aspects of their jumping mechanism were still not entirely clear prior to this study. We utilized traditional dissection, 3D virtual dissection, and high-speed filming techniques to investigate the functional morphology of their thorax. Our results show several new insights into their extraordinary clicking and jumping mechanisms. ABSTRACT: We investigated and described the thoracic structures, jumping mechanism, and promesothoracic interlocking mechanism of the click beetle Campsosternus auratus (Drury) (Elateridae: Dendrometrinae). Two experiments were conducted to reveal the critical muscles and sclerites involved in the jumping mechanism. They showed that M2 and M4 are essential clicking-related muscles. The prosternal process, the prosternal rest of the mesoventrite, the mesoventral cavity, the base of the elytra, and the posterodorsal evagination of the pronotum are critical clicking-related sclerites. The destruction of any of these muscles and sclerites resulted in the loss of normal clicking and jumping ability. The mesonotum was identified as a highly specialized saddle-shaped biological spring that can store elastic energy and release it abruptly. During the jumping process of C. auratus, M2 contracts to establish and latch the clicking system, and M4 contracts to generate energy. The specialized thoracic biological springs (e.g., the prosternum and mesonotum) and elastic cuticles store and abruptly release the colossal energy, which explosively raises the beetle body in a few milliseconds. The specialized trigger muscle for the release of the clicking was not found; our study supports the theory that the triggering of the clicking is due to the building-up of tension (i.e., elastic energy) in the system. |
---|