Cargando…
Automated Feature Extraction on AsMap for Emotion Classification Using EEG
Emotion recognition using EEG has been widely studied to address the challenges associated with affective computing. Using manual feature extraction methods on EEG signals results in sub-optimal performance by the learning models. With the advancements in deep learning as a tool for automated featur...
Autores principales: | Ahmed, Md. Zaved Iqubal, Sinha, Nidul, Phadikar, Souvik, Ghaderpour, Ebrahim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955420/ https://www.ncbi.nlm.nih.gov/pubmed/35336517 http://dx.doi.org/10.3390/s22062346 |
Ejemplares similares
-
A Novel Baseline Removal Paradigm for Subject-Independent Features in Emotion Classification Using EEG
por: Ahmed, Md. Zaved Iqubal, et al.
Publicado: (2023) -
Automatic Muscle Artifacts Identification and Removal from Single-Channel EEG Using Wavelet Transform with Meta-Heuristically Optimized Non-Local Means Filter
por: Phadikar, Souvik, et al.
Publicado: (2022) -
SAM 40: Dataset of 40 subject EEG recordings to monitor the induced-stress while performing Stroop color-word test, arithmetic task, and mirror image recognition task
por: Ghosh, Rajdeep, et al.
Publicado: (2022) -
Emotional State Classification from MUSIC-Based Features of Multichannel EEG Signals
por: Hossain, Sakib Abrar, et al.
Publicado: (2023) -
Fuzzy logic based on-line fault detection and classification in transmission line
por: Adhikari, Shuma, et al.
Publicado: (2016)