Cargando…
Human–Machine Multi-Turn Language Dialogue Interaction Based on Deep Learning
During multi-turn dialogue, with the increase in dialogue turns, the difficulty of intention recognition and the generation of the following sentence reply become more and more difficult. This paper mainly optimizes the context information extraction ability of the Seq2Seq Encoder in multi-turn dial...
Autores principales: | Ke, Xianxin, Hu, Ping, Yang, Chenghao, Zhang, Renbao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955483/ https://www.ncbi.nlm.nih.gov/pubmed/35334647 http://dx.doi.org/10.3390/mi13030355 |
Ejemplares similares
-
In dialogue with an avatar, language behavior is identical to dialogue with a human partner
por: Heyselaar, Evelien, et al.
Publicado: (2015) -
EAGS: An extracting auxiliary knowledge graph model in multi-turn dialogue generation
por: Ning, Bo, et al.
Publicado: (2022) -
End-to-end dialogue structure parsing on multi-floor dialogue based on multi-task learning
por: Kawano, Seiya, et al.
Publicado: (2023) -
Book Review: Understanding Dialogue: Language Use and Social Interaction
por: Xiang, Keshu
Publicado: (2021) -
Chatbot Language - crowdsource perceptions and reactions to dialogue systems to inform dialogue design decisions
por: Popp, Birgit, et al.
Publicado: (2022)