Cargando…
CVD-Synthesis of N-CNT Using Propane and Ammonia
N-CNT is a promising material for various applications, including catalysis, electronics, etc., whose widespread use is limited by the significant cost of production. CVD-synthesis using a propane–ammonia mixture is one of the cost-effective processes for obtaining carbon nanomaterials. In this work...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955545/ https://www.ncbi.nlm.nih.gov/pubmed/35329693 http://dx.doi.org/10.3390/ma15062241 |
_version_ | 1784676362197401600 |
---|---|
author | Skudin, Valery Andreeva, Tatiana Myachina, Maria Gavrilova, Natalia |
author_facet | Skudin, Valery Andreeva, Tatiana Myachina, Maria Gavrilova, Natalia |
author_sort | Skudin, Valery |
collection | PubMed |
description | N-CNT is a promising material for various applications, including catalysis, electronics, etc., whose widespread use is limited by the significant cost of production. CVD-synthesis using a propane–ammonia mixture is one of the cost-effective processes for obtaining carbon nanomaterials. In this work, the CVD-synthesis of N-CNT was conducted in a traditional bed reactor using catalyst: (Al(0,4)Fe(0,48)Co(0,12))(2)O(3) + 3% MoO(3). The synthesized material was characterized by XPS spectroscopy, ASAP, TEM and SEM-microscopy. It is shown that the carbon material contains various morphological structures, including multiwalled carbon nanotubes (MWCNT), bamboo-like structures, spherical and irregular sections. The content of structures (bamboo-like and spherical structure) caused by the incorporation of nitrogen into the carbon nanotube structure depends on the synthesis temperature and the ammonia content in the reaction mixture. The optimal conditions for CVD-synthesis were determined: the temperature range (650–700 °C), the composition (C(3)H(8)/NH(3) = 50/50%) and flow rate of the ammonia-propane mixture (200 mL/min). |
format | Online Article Text |
id | pubmed-8955545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89555452022-03-26 CVD-Synthesis of N-CNT Using Propane and Ammonia Skudin, Valery Andreeva, Tatiana Myachina, Maria Gavrilova, Natalia Materials (Basel) Article N-CNT is a promising material for various applications, including catalysis, electronics, etc., whose widespread use is limited by the significant cost of production. CVD-synthesis using a propane–ammonia mixture is one of the cost-effective processes for obtaining carbon nanomaterials. In this work, the CVD-synthesis of N-CNT was conducted in a traditional bed reactor using catalyst: (Al(0,4)Fe(0,48)Co(0,12))(2)O(3) + 3% MoO(3). The synthesized material was characterized by XPS spectroscopy, ASAP, TEM and SEM-microscopy. It is shown that the carbon material contains various morphological structures, including multiwalled carbon nanotubes (MWCNT), bamboo-like structures, spherical and irregular sections. The content of structures (bamboo-like and spherical structure) caused by the incorporation of nitrogen into the carbon nanotube structure depends on the synthesis temperature and the ammonia content in the reaction mixture. The optimal conditions for CVD-synthesis were determined: the temperature range (650–700 °C), the composition (C(3)H(8)/NH(3) = 50/50%) and flow rate of the ammonia-propane mixture (200 mL/min). MDPI 2022-03-18 /pmc/articles/PMC8955545/ /pubmed/35329693 http://dx.doi.org/10.3390/ma15062241 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Skudin, Valery Andreeva, Tatiana Myachina, Maria Gavrilova, Natalia CVD-Synthesis of N-CNT Using Propane and Ammonia |
title | CVD-Synthesis of N-CNT Using Propane and Ammonia |
title_full | CVD-Synthesis of N-CNT Using Propane and Ammonia |
title_fullStr | CVD-Synthesis of N-CNT Using Propane and Ammonia |
title_full_unstemmed | CVD-Synthesis of N-CNT Using Propane and Ammonia |
title_short | CVD-Synthesis of N-CNT Using Propane and Ammonia |
title_sort | cvd-synthesis of n-cnt using propane and ammonia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955545/ https://www.ncbi.nlm.nih.gov/pubmed/35329693 http://dx.doi.org/10.3390/ma15062241 |
work_keys_str_mv | AT skudinvalery cvdsynthesisofncntusingpropaneandammonia AT andreevatatiana cvdsynthesisofncntusingpropaneandammonia AT myachinamaria cvdsynthesisofncntusingpropaneandammonia AT gavrilovanatalia cvdsynthesisofncntusingpropaneandammonia |