Cargando…
Optical Properties of Mn-Doped CuGa(In)S-ZnS Nanocrystals (NCs): Effects of Host NC and Mn Concentration
Time-gated fluorescence measurement (TGFM) using long-life fluorescence probes is a highly sensitive fluorescence-measurement technology due to the inherently high signal-to-background ratio. Although many probes for TGFM such as luminescent-metal-complex probes and lanthanide-doped nanoparticles ar...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956066/ https://www.ncbi.nlm.nih.gov/pubmed/35335807 http://dx.doi.org/10.3390/nano12060994 |
Sumario: | Time-gated fluorescence measurement (TGFM) using long-life fluorescence probes is a highly sensitive fluorescence-measurement technology due to the inherently high signal-to-background ratio. Although many probes for TGFM such as luminescent-metal-complex probes and lanthanide-doped nanoparticles are in development, they generally need sophisticated/expensive instruments for biosensing/imaging applications. Probes possessing high brightness, low-energy (visible light) excitation, and long lifetimes up to milliseconds of luminescence, are highly desired in order to simplify the optical and electronic design of time-gated instruments (e.g., adopting non-UV-grade optics or low-speed electronics), lower the instrument complexity and cost, and facilitate broader applications of TGFM. In this work, we developed Mn-doped CuGa(In)S-ZnS nanocrystals (NCs) using simple and standard synthetic steps to achieve all the desired optical features in order to investigate how the optical properties (fluorescence/absorption spectra, brightness, and lifetimes) of the Mn-doped NCs are affected by different host NCs and Mn concentrations in host NCs. With optimal synthetic conditions, a library of Mn-doped NCs was achieved that possessed high brightness (up to 47% quantum yield), low-energy excitation (by 405 nm visible light), and long lifetimes (up to 3.67 ms). Additionally, the time-domain fluorescence characteristics of optimal Mn-doped NCs were measured under pulsed 405 nm laser excitation and bandpass-filter-based emission collection. The measurement results indicate the feasibility of these optimal Mn-doped NCs in TGFM-based biosensing/imaging. |
---|