Cargando…
Efficient joint noise removal and multi exposure fusion
Multi-exposure fusion (MEF) is a technique that combines different snapshots of the same scene, captured with different exposure times, into a single image. This combination process (also known as fusion) is performed in such a way that the parts with better exposure of each input image have a stron...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956173/ https://www.ncbi.nlm.nih.gov/pubmed/35333884 http://dx.doi.org/10.1371/journal.pone.0265464 |
Sumario: | Multi-exposure fusion (MEF) is a technique that combines different snapshots of the same scene, captured with different exposure times, into a single image. This combination process (also known as fusion) is performed in such a way that the parts with better exposure of each input image have a stronger influence. Therefore, in the result image all areas are well exposed. In this paper, we propose a new method that performs MEF and noise removal. Rather than denoising each input image individually and then fusing the obtained results, the proposed strategy jointly performs fusion and denoising in the Discrete Cosinus Transform (DCT) domain, which leads to a very efficient algorithm. The method takes advantage of spatio-temporal patch selection and collaborative 3D thresholding. Several experiments show that the obtained results are significantly superior to the existing state of the art. |
---|