Cargando…
Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface
Accurate transmission of biosignals without interference of surrounding noises is a key factor for the realization of human-machine interfaces (HMIs). We propose frequency-selective acoustic and haptic sensors for dual-mode HMIs based on triboelectric sensors with hierarchical macrodome/micropore/na...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956263/ https://www.ncbi.nlm.nih.gov/pubmed/35333568 http://dx.doi.org/10.1126/sciadv.abj9220 |
Sumario: | Accurate transmission of biosignals without interference of surrounding noises is a key factor for the realization of human-machine interfaces (HMIs). We propose frequency-selective acoustic and haptic sensors for dual-mode HMIs based on triboelectric sensors with hierarchical macrodome/micropore/nanoparticle structure of ferroelectric composites. Our sensor shows a high sensitivity and linearity under a wide range of dynamic pressures and resonance frequency, which enables high acoustic frequency selectivity in a wide frequency range (145 to 9000 Hz), thus rendering noise-independent voice recognition possible. Our frequency-selective multichannel acoustic sensor array combined with an artificial neural network demonstrates over 95% accurate voice recognition for different frequency noises ranging from 100 to 8000 Hz. We demonstrate that our dual-mode sensor with linear response and frequency selectivity over a wide range of dynamic pressures facilitates the differentiation of surface texture and control of an avatar robot using both acoustic and mechanical inputs without interference from surrounding noise. |
---|