Cargando…
TNet: Transmission Network Inference Using Within-Host Strain Diversity and its Application to Geographical Tracking of COVID-19 Spread
The inference of disease transmission networks is an important problem in epidemiology. One popular approach for building transmission networks is to reconstruct a phylogenetic tree using sequences from disease strains sampled from infected hosts and infer transmissions based on this tree. However,...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956368/ https://www.ncbi.nlm.nih.gov/pubmed/34255632 http://dx.doi.org/10.1109/TCBB.2021.3096455 |
Ejemplares similares
-
IoTNet: An Efficient and Accurate Convolutional Neural Network for IoT Devices
por: Lawrence, Tom, et al.
Publicado: (2019) -
Within-host Mycobacterium tuberculosis diversity and its utility for inferences of transmission
por: Martin, Michael A., et al.
Publicado: (2018) -
BUViTNet: Breast Ultrasound Detection via Vision Transformers
por: Ayana, Gelan, et al.
Publicado: (2022) -
XTNetFile, a fault tolerant extension of ROOT TNetFile
por: Dorigo, A, et al.
Publicado: (2005) -
MulTNet: A Multi-Scale Transformer Network for Marine Image Segmentation toward Fishing
por: Xu, Xi, et al.
Publicado: (2022)