Cargando…
A Data Augmentation Method for Prohibited Item X-Ray Pseudocolor Images in X-Ray Security Inspection Based on Wasserstein Generative Adversarial Network and Spatial-and-Channel Attention Block
For public security and crime prevention, the detection of prohibited items in X-ray security inspection based on deep learning has attracted widespread attention. However, the pseudocolor image dataset is scarce due to security, which brings an enormous challenge to the detection of prohibited item...
Autores principales: | Liu, Dongming, Liu, Jianchang, Yuan, Peixin, Yu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956408/ https://www.ncbi.nlm.nih.gov/pubmed/35341189 http://dx.doi.org/10.1155/2022/8172466 |
Ejemplares similares
-
A Lightweight Dangerous Liquid Detection Method Based on Depthwise Separable Convolution for X-Ray Security Inspection
por: Liu, Dongming, et al.
Publicado: (2022) -
Data Augmentation of X-ray Images for Automatic Cargo Inspection of Nuclear Items
por: Jang, Haneol, et al.
Publicado: (2023) -
EM-YOLO: An X-ray Prohibited-Item-Detection Method Based on Edge and Material Information Fusion
por: Jing, Bing, et al.
Publicado: (2023) -
Panchromatic Image Super-Resolution Via Self Attention-Augmented Wasserstein Generative Adversarial Network
por: Du, Juan, et al.
Publicado: (2021) -
Wasserstein Uncertainty Estimation for Adversarial Domain Matching
por: Wang, Rui, et al.
Publicado: (2022)