Cargando…
Two-stage deep learning hybrid framework based on multi-factor multi-scale and intelligent optimization for air pollutant prediction and early warning
Effective prediction of air pollution concentrations is of great importance to both the physical and mental health of citizens and urban pollution control. As one of the main components of air pollutants, accurate prediction of PM(2.5) can provide a reference for air pollution control and pollution...
Autores principales: | Wang, Jujie, Xu, Wenjie, Dong, Jian, Zhang, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956459/ https://www.ncbi.nlm.nih.gov/pubmed/35369125 http://dx.doi.org/10.1007/s00477-022-02202-5 |
Ejemplares similares
-
An optimized decomposition integration framework for carbon price prediction based on multi-factor two-stage feature dimension reduction
por: Xu, Wenjie, et al.
Publicado: (2022) -
Multi-Horizon Air Pollution Forecasting with Deep Neural Networks
por: Arsov, Mirche, et al.
Publicado: (2021) -
Multi-objective optimization: evolutionary to hybrid framework
por: Mandal, Jyotsna K, et al.
Publicado: (2018) -
Early warnings for multi-stage transitions in dynamics on networks
por: MacLaren, Neil G., et al.
Publicado: (2023) -
Toward an Improved Air Pollution Warning System in Quebec
por: Masselot, Pierre, et al.
Publicado: (2019)