Cargando…
A light-fuelled nanoratchet shifts a coupled chemical equilibrium
Biological molecular machines enable chemical transformations, assembly, replication and motility, but most distinctively drive chemical systems out of-equilibrium to sustain life(1,2). In such processes, nanometre-sized machines produce molecular energy carriers by driving endergonic equilibrium re...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956507/ https://www.ncbi.nlm.nih.gov/pubmed/34916655 http://dx.doi.org/10.1038/s41565-021-01021-z |
_version_ | 1784676582031360000 |
---|---|
author | Kathan, Michael Crespi, Stefano Thiel, Niklas O. Stares, Daniel L. Morsa, Denis de Boer, John Pacella, Gianni van den Enk, Tobias Kobauri, Piermichele Portale, Giuseppe Schalley, Christoph A. Feringa, Ben L. |
author_facet | Kathan, Michael Crespi, Stefano Thiel, Niklas O. Stares, Daniel L. Morsa, Denis de Boer, John Pacella, Gianni van den Enk, Tobias Kobauri, Piermichele Portale, Giuseppe Schalley, Christoph A. Feringa, Ben L. |
author_sort | Kathan, Michael |
collection | PubMed |
description | Biological molecular machines enable chemical transformations, assembly, replication and motility, but most distinctively drive chemical systems out of-equilibrium to sustain life(1,2). In such processes, nanometre-sized machines produce molecular energy carriers by driving endergonic equilibrium reactions. However, transforming the work performed by artificial nanomachines(3–5) into chemical energy remains highly challenging. Here, we report a light-fuelled small-molecule ratchet capable of driving a coupled chemical equilibrium energetically uphill. By bridging two imine(6–9) macrocycles with a molecular motor(10,11), the machine forms crossings and consequently adopts several distinct topologies by either a thermal (temporary bond-dissociation) or photochemical (unidirectional rotation) pathway. While the former will relax the machine towards the global energetic minimum, the latter increases the number of crossings in the system above the equilibrium value. Our approach provides a blueprint for coupling continuous mechanical motion performed by a molecular machine with a chemical transformation to reach an out-of-equilibrium state. |
format | Online Article Text |
id | pubmed-8956507 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-89565072022-04-07 A light-fuelled nanoratchet shifts a coupled chemical equilibrium Kathan, Michael Crespi, Stefano Thiel, Niklas O. Stares, Daniel L. Morsa, Denis de Boer, John Pacella, Gianni van den Enk, Tobias Kobauri, Piermichele Portale, Giuseppe Schalley, Christoph A. Feringa, Ben L. Nat Nanotechnol Letter Biological molecular machines enable chemical transformations, assembly, replication and motility, but most distinctively drive chemical systems out of-equilibrium to sustain life(1,2). In such processes, nanometre-sized machines produce molecular energy carriers by driving endergonic equilibrium reactions. However, transforming the work performed by artificial nanomachines(3–5) into chemical energy remains highly challenging. Here, we report a light-fuelled small-molecule ratchet capable of driving a coupled chemical equilibrium energetically uphill. By bridging two imine(6–9) macrocycles with a molecular motor(10,11), the machine forms crossings and consequently adopts several distinct topologies by either a thermal (temporary bond-dissociation) or photochemical (unidirectional rotation) pathway. While the former will relax the machine towards the global energetic minimum, the latter increases the number of crossings in the system above the equilibrium value. Our approach provides a blueprint for coupling continuous mechanical motion performed by a molecular machine with a chemical transformation to reach an out-of-equilibrium state. Nature Publishing Group UK 2021-12-16 2022 /pmc/articles/PMC8956507/ /pubmed/34916655 http://dx.doi.org/10.1038/s41565-021-01021-z Text en © The Author(s), under exclusive licence to Springer Nature Limited 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Letter Kathan, Michael Crespi, Stefano Thiel, Niklas O. Stares, Daniel L. Morsa, Denis de Boer, John Pacella, Gianni van den Enk, Tobias Kobauri, Piermichele Portale, Giuseppe Schalley, Christoph A. Feringa, Ben L. A light-fuelled nanoratchet shifts a coupled chemical equilibrium |
title | A light-fuelled nanoratchet shifts a coupled chemical equilibrium |
title_full | A light-fuelled nanoratchet shifts a coupled chemical equilibrium |
title_fullStr | A light-fuelled nanoratchet shifts a coupled chemical equilibrium |
title_full_unstemmed | A light-fuelled nanoratchet shifts a coupled chemical equilibrium |
title_short | A light-fuelled nanoratchet shifts a coupled chemical equilibrium |
title_sort | light-fuelled nanoratchet shifts a coupled chemical equilibrium |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956507/ https://www.ncbi.nlm.nih.gov/pubmed/34916655 http://dx.doi.org/10.1038/s41565-021-01021-z |
work_keys_str_mv | AT kathanmichael alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT crespistefano alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT thielniklaso alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT staresdaniell alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT morsadenis alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT deboerjohn alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT pacellagianni alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT vandenenktobias alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT kobauripiermichele alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT portalegiuseppe alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT schalleychristopha alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT feringabenl alightfuellednanoratchetshiftsacoupledchemicalequilibrium AT kathanmichael lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT crespistefano lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT thielniklaso lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT staresdaniell lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT morsadenis lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT deboerjohn lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT pacellagianni lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT vandenenktobias lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT kobauripiermichele lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT portalegiuseppe lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT schalleychristopha lightfuellednanoratchetshiftsacoupledchemicalequilibrium AT feringabenl lightfuellednanoratchetshiftsacoupledchemicalequilibrium |