Cargando…
Machine learning of language use on Twitter reveals weak and non-specific predictions
Depressed individuals use language differently than healthy controls and it has been proposed that social media posts can be used to identify depression. Much of the evidence behind this claim relies on indirect measures of mental health and few studies have tested if these language features are spe...
Autores principales: | Kelley, Sean W., Mhaonaigh, Caoimhe Ní, Burke, Louise, Whelan, Robert, Gillan, Claire M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956571/ https://www.ncbi.nlm.nih.gov/pubmed/35338248 http://dx.doi.org/10.1038/s41746-022-00576-y |
Ejemplares similares
-
Using language in social media posts to study the network dynamics of depression longitudinally
por: Kelley, Sean W., et al.
Publicado: (2022) -
Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study
por: Visweswaran, Shyam, et al.
Publicado: (2020) -
Automatic Detection of Twitter Users Who Express Chronic Stress Experiences via Supervised Machine Learning and Natural Language Processing
por: Yang, Yuan-Chi, et al.
Publicado: (2022) -
Exploring Eating Disorder Topics on Twitter: Machine Learning Approach
por: Zhou, Sicheng, et al.
Publicado: (2020) -
Detection of Turkish Fake News in Twitter with Machine Learning Algorithms
por: Taskin, Suleyman Gokhan, et al.
Publicado: (2021)