Cargando…

In vitro characterisation of the MS2 RNA polymerase complex reveals host factors that modulate emesviral replicase activity

The RNA phage MS2 is one of the most important model organisms in molecular biology and virology. Despite its comprehensive characterisation, the composition of the RNA replication machinery remained obscure. Here, we characterised host proteins required to reconstitute the functional replicase in v...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagner, Alexander, Weise, Laura I., Mutschler, Hannes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956599/
https://www.ncbi.nlm.nih.gov/pubmed/35338258
http://dx.doi.org/10.1038/s42003-022-03178-2
Descripción
Sumario:The RNA phage MS2 is one of the most important model organisms in molecular biology and virology. Despite its comprehensive characterisation, the composition of the RNA replication machinery remained obscure. Here, we characterised host proteins required to reconstitute the functional replicase in vitro. By combining a purified replicase sub-complex with elements of an in vitro translation system, we confirmed that the three host factors, EF-Ts, EF-Tu, and ribosomal protein S1, are part of the active replicase holocomplex. Furthermore, we found that the translation initiation factors IF1 and IF3 modulate replicase activity. While IF3 directly competes with the replicase for template binding, IF1 appears to act as an RNA chaperone that facilitates polymerase readthrough. Finally, we demonstrate in vitro formation of RNAs containing minimal motifs required for amplification. Our work sheds light on the MS2 replication machinery and provides a new promising platform for cell-free evolution.