Cargando…

The speed limit of optoelectronics

Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid’s electronic properties but...

Descripción completa

Detalles Bibliográficos
Autores principales: Ossiander, M., Golyari, K., Scharl, K., Lehnert, L., Siegrist, F., Bürger, J. P., Zimin, D., Gessner, J. A., Weidman, M., Floss, I., Smejkal, V., Donsa, S., Lemell, C., Libisch, F., Karpowicz, N., Burgdörfer, J., Krausz, F., Schultze, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956609/
https://www.ncbi.nlm.nih.gov/pubmed/35338120
http://dx.doi.org/10.1038/s41467-022-29252-1
_version_ 1784676602332839936
author Ossiander, M.
Golyari, K.
Scharl, K.
Lehnert, L.
Siegrist, F.
Bürger, J. P.
Zimin, D.
Gessner, J. A.
Weidman, M.
Floss, I.
Smejkal, V.
Donsa, S.
Lemell, C.
Libisch, F.
Karpowicz, N.
Burgdörfer, J.
Krausz, F.
Schultze, M.
author_facet Ossiander, M.
Golyari, K.
Scharl, K.
Lehnert, L.
Siegrist, F.
Bürger, J. P.
Zimin, D.
Gessner, J. A.
Weidman, M.
Floss, I.
Smejkal, V.
Donsa, S.
Lemell, C.
Libisch, F.
Karpowicz, N.
Burgdörfer, J.
Krausz, F.
Schultze, M.
author_sort Ossiander, M.
collection PubMed
description Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid’s electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond. We control the subsequent Bloch wavepacket motion with the electric field of visible light. The resulting current allows sampling optical fields and tracking charge motion driven by optical signals. Our approach utilizes a large fraction of the conduction-band bandwidth to maximize operating speed. We identify population transfer to adjacent bands and the associated group velocity inversion as the mechanism ultimately limiting how fast electric currents can be controlled in solids. Our results imply a fundamental limit for classical signal processing and suggest the feasibility of solid-state optoelectronics up to 1 PHz frequency.
format Online
Article
Text
id pubmed-8956609
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-89566092022-04-20 The speed limit of optoelectronics Ossiander, M. Golyari, K. Scharl, K. Lehnert, L. Siegrist, F. Bürger, J. P. Zimin, D. Gessner, J. A. Weidman, M. Floss, I. Smejkal, V. Donsa, S. Lemell, C. Libisch, F. Karpowicz, N. Burgdörfer, J. Krausz, F. Schultze, M. Nat Commun Article Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid’s electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond. We control the subsequent Bloch wavepacket motion with the electric field of visible light. The resulting current allows sampling optical fields and tracking charge motion driven by optical signals. Our approach utilizes a large fraction of the conduction-band bandwidth to maximize operating speed. We identify population transfer to adjacent bands and the associated group velocity inversion as the mechanism ultimately limiting how fast electric currents can be controlled in solids. Our results imply a fundamental limit for classical signal processing and suggest the feasibility of solid-state optoelectronics up to 1 PHz frequency. Nature Publishing Group UK 2022-03-25 /pmc/articles/PMC8956609/ /pubmed/35338120 http://dx.doi.org/10.1038/s41467-022-29252-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ossiander, M.
Golyari, K.
Scharl, K.
Lehnert, L.
Siegrist, F.
Bürger, J. P.
Zimin, D.
Gessner, J. A.
Weidman, M.
Floss, I.
Smejkal, V.
Donsa, S.
Lemell, C.
Libisch, F.
Karpowicz, N.
Burgdörfer, J.
Krausz, F.
Schultze, M.
The speed limit of optoelectronics
title The speed limit of optoelectronics
title_full The speed limit of optoelectronics
title_fullStr The speed limit of optoelectronics
title_full_unstemmed The speed limit of optoelectronics
title_short The speed limit of optoelectronics
title_sort speed limit of optoelectronics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956609/
https://www.ncbi.nlm.nih.gov/pubmed/35338120
http://dx.doi.org/10.1038/s41467-022-29252-1
work_keys_str_mv AT ossianderm thespeedlimitofoptoelectronics
AT golyarik thespeedlimitofoptoelectronics
AT scharlk thespeedlimitofoptoelectronics
AT lehnertl thespeedlimitofoptoelectronics
AT siegristf thespeedlimitofoptoelectronics
AT burgerjp thespeedlimitofoptoelectronics
AT zimind thespeedlimitofoptoelectronics
AT gessnerja thespeedlimitofoptoelectronics
AT weidmanm thespeedlimitofoptoelectronics
AT flossi thespeedlimitofoptoelectronics
AT smejkalv thespeedlimitofoptoelectronics
AT donsas thespeedlimitofoptoelectronics
AT lemellc thespeedlimitofoptoelectronics
AT libischf thespeedlimitofoptoelectronics
AT karpowiczn thespeedlimitofoptoelectronics
AT burgdorferj thespeedlimitofoptoelectronics
AT krauszf thespeedlimitofoptoelectronics
AT schultzem thespeedlimitofoptoelectronics
AT ossianderm speedlimitofoptoelectronics
AT golyarik speedlimitofoptoelectronics
AT scharlk speedlimitofoptoelectronics
AT lehnertl speedlimitofoptoelectronics
AT siegristf speedlimitofoptoelectronics
AT burgerjp speedlimitofoptoelectronics
AT zimind speedlimitofoptoelectronics
AT gessnerja speedlimitofoptoelectronics
AT weidmanm speedlimitofoptoelectronics
AT flossi speedlimitofoptoelectronics
AT smejkalv speedlimitofoptoelectronics
AT donsas speedlimitofoptoelectronics
AT lemellc speedlimitofoptoelectronics
AT libischf speedlimitofoptoelectronics
AT karpowiczn speedlimitofoptoelectronics
AT burgdorferj speedlimitofoptoelectronics
AT krauszf speedlimitofoptoelectronics
AT schultzem speedlimitofoptoelectronics