Cargando…
Functional movement screen dataset collected with two Azure Kinect depth sensors
This paper presents a dataset for vision-based autonomous Functional Movement Screen (FMS) collected from 45 human subjects of different ages (18–59 years old) executing the following movements: deep squat, hurdle step, in-line lunge, shoulder mobility, active straight raise, trunk stability push-up...
Autores principales: | Xing, Qing-Jun, Shen, Yuan-Yuan, Cao, Run, Zong, Shou-Xin, Zhao, Shu-Xiang, Shen, Yan-Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956653/ https://www.ncbi.nlm.nih.gov/pubmed/35338164 http://dx.doi.org/10.1038/s41597-022-01188-7 |
Ejemplares similares
-
A dataset of human body tracking of walking actions captured using two Azure Kinect sensors
por: Posner, Charli, et al.
Publicado: (2023) -
The VISTA datasets, a combination of inertial sensors and depth cameras data for activity recognition
por: Fiorini, Laura, et al.
Publicado: (2022) -
Evaluating the Accuracy of the Azure Kinect and Kinect v2
por: Kurillo, Gregorij, et al.
Publicado: (2022) -
A collection of read depth profiles at structural variant breakpoints
por: Bezdvornykh, Igor, et al.
Publicado: (2023) -
An extensive dataset of eye movements during viewing of complex images
por: Wilming, Niklas, et al.
Publicado: (2017)