Cargando…

The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective

Mining a large cohort of single-cell transcriptomics data, here we employ combinatorial optimization techniques to chart the landscape of optimal combination therapies in cancer. We assume that each individual therapy can target any one of 1269 genes encoding cell surface receptors, which may be tar...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmadi, Saba, Sukprasert, Pattara, Vegesna, Rahulsimham, Sinha, Sanju, Schischlik, Fiorella, Artzi, Natalie, Khuller, Samir, Schäffer, Alejandro A., Ruppin, Eytan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956718/
https://www.ncbi.nlm.nih.gov/pubmed/35338126
http://dx.doi.org/10.1038/s41467-022-29154-2
_version_ 1784676621562675200
author Ahmadi, Saba
Sukprasert, Pattara
Vegesna, Rahulsimham
Sinha, Sanju
Schischlik, Fiorella
Artzi, Natalie
Khuller, Samir
Schäffer, Alejandro A.
Ruppin, Eytan
author_facet Ahmadi, Saba
Sukprasert, Pattara
Vegesna, Rahulsimham
Sinha, Sanju
Schischlik, Fiorella
Artzi, Natalie
Khuller, Samir
Schäffer, Alejandro A.
Ruppin, Eytan
author_sort Ahmadi, Saba
collection PubMed
description Mining a large cohort of single-cell transcriptomics data, here we employ combinatorial optimization techniques to chart the landscape of optimal combination therapies in cancer. We assume that each individual therapy can target any one of 1269 genes encoding cell surface receptors, which may be targets of CAR-T, conjugated antibodies or coated nanoparticle therapies. We find that in most cancer types, personalized combinations composed of at most four targets are then sufficient for killing at least 80% of tumor cells while sparing at least 90% of nontumor cells in the tumor microenvironment. However, as more stringent and selective killing is required, the number of targets needed rises rapidly. Emerging individual targets include PTPRZ1 for brain and head and neck cancers and EGFR in multiple tumor types. In sum, this study provides a computational estimate of the identity and number of targets needed in combination to target cancers selectively and precisely.
format Online
Article
Text
id pubmed-8956718
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-89567182022-04-20 The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective Ahmadi, Saba Sukprasert, Pattara Vegesna, Rahulsimham Sinha, Sanju Schischlik, Fiorella Artzi, Natalie Khuller, Samir Schäffer, Alejandro A. Ruppin, Eytan Nat Commun Article Mining a large cohort of single-cell transcriptomics data, here we employ combinatorial optimization techniques to chart the landscape of optimal combination therapies in cancer. We assume that each individual therapy can target any one of 1269 genes encoding cell surface receptors, which may be targets of CAR-T, conjugated antibodies or coated nanoparticle therapies. We find that in most cancer types, personalized combinations composed of at most four targets are then sufficient for killing at least 80% of tumor cells while sparing at least 90% of nontumor cells in the tumor microenvironment. However, as more stringent and selective killing is required, the number of targets needed rises rapidly. Emerging individual targets include PTPRZ1 for brain and head and neck cancers and EGFR in multiple tumor types. In sum, this study provides a computational estimate of the identity and number of targets needed in combination to target cancers selectively and precisely. Nature Publishing Group UK 2022-03-25 /pmc/articles/PMC8956718/ /pubmed/35338126 http://dx.doi.org/10.1038/s41467-022-29154-2 Text en © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ahmadi, Saba
Sukprasert, Pattara
Vegesna, Rahulsimham
Sinha, Sanju
Schischlik, Fiorella
Artzi, Natalie
Khuller, Samir
Schäffer, Alejandro A.
Ruppin, Eytan
The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective
title The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective
title_full The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective
title_fullStr The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective
title_full_unstemmed The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective
title_short The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective
title_sort landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956718/
https://www.ncbi.nlm.nih.gov/pubmed/35338126
http://dx.doi.org/10.1038/s41467-022-29154-2
work_keys_str_mv AT ahmadisaba thelandscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT sukprasertpattara thelandscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT vegesnarahulsimham thelandscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT sinhasanju thelandscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT schischlikfiorella thelandscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT artzinatalie thelandscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT khullersamir thelandscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT schafferalejandroa thelandscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT ruppineytan thelandscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT ahmadisaba landscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT sukprasertpattara landscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT vegesnarahulsimham landscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT sinhasanju landscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT schischlikfiorella landscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT artzinatalie landscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT khullersamir landscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT schafferalejandroa landscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective
AT ruppineytan landscapeofreceptormediatedprecisioncancercombinationtherapyviaasinglecellperspective