Cargando…
Architecture of the NADPH oxidase family of enzymes
The NADPH Oxidases (NOX) catalyze the deliberate production of reactive oxygen species (ROS) and are established regulators of redox-dependent processes across diverse biological settings. Proper management of their activity is controlled through a conserved electron transfer (ET) cascade from cytos...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956913/ https://www.ncbi.nlm.nih.gov/pubmed/35334249 http://dx.doi.org/10.1016/j.redox.2022.102298 |
Sumario: | The NADPH Oxidases (NOX) catalyze the deliberate production of reactive oxygen species (ROS) and are established regulators of redox-dependent processes across diverse biological settings. Proper management of their activity is controlled through a conserved electron transfer (ET) cascade from cytosolic NADPH substrate through the plasma membrane to extracellular O(2). After decades-long investigations of their biological functions, including potential as drug targets, only very recently has atomic-resolution information of NOX enzymes been made available. In this graphical review, we summarize the present structural biology understanding of the NOX enzymes afforded by X-ray crystallography and cryo-electron microscopy. Combined molecular-level insights predominantly informed by DUOX1 full-length Cryo-EM structures suggest a general structural basis for the control of their catalytic activity by intracellular domain-domain stabilization. |
---|