Cargando…
Deep learning-based pelvic levator hiatus segmentation from ultrasound images
PURPOSE: To automatically segment and measure the levator hiatus with a deep learning approach and evaluate the performance between algorithms, sonographers, and different devices. METHODS: Three deep learning models (UNet-ResNet34, HR-Net, and SegNet) were trained with 360 images and validated with...
Autores principales: | Huang, Zeping, Qu, Enze, Meng, Yishuang, Zhang, Man, Wei, Qiuwen, Bai, Xianghui, Zhang, Xinling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956942/ https://www.ncbi.nlm.nih.gov/pubmed/35345817 http://dx.doi.org/10.1016/j.ejro.2022.100412 |
Ejemplares similares
-
Three-Dimensional Pelvic Floor Ultrasound Assessment of Pelvic Organ Prolapse: Minimal Levator Hiatus and Levator Ani Deficiency Score
por: Yune, Yongwoo, et al.
Publicado: (2021) -
Effects of age on levator function and morphometry of the levator hiatus in women with pelvic floor disorders
por: Weemhoff, Mirjam, et al.
Publicado: (2010) -
Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network
por: Bonmati, Ester, et al.
Publicado: (2018) -
Effects of yoga on the intervention of levator ani hiatus in postpartum women: a prospective study
por: Li, Qunfeng, et al.
Publicado: (2021) -
Postpartum pelvic floor muscle training, levator ani avulsion and levator hiatus area: a randomized trial
por: Hilde, Gunvor, et al.
Publicado: (2022)