Cargando…
Implementing Machine Learning Models for Suicide Risk Prediction in Clinical Practice: Focus Group Study With Hospital Providers
BACKGROUND: Interest in developing machine learning models that use electronic health record data to predict patients’ risk of suicidal behavior has recently proliferated. However, whether and how such models might be implemented and useful in clinical practice remain unknown. To ultimately make aut...
Autores principales: | Bentley, Kate H, Zuromski, Kelly L, Fortgang, Rebecca G, Madsen, Emily M, Kessler, Daniel, Lee, Hyunjoon, Nock, Matthew K, Reis, Ben Y, Castro, Victor M, Smoller, Jordan W |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956996/ https://www.ncbi.nlm.nih.gov/pubmed/35275075 http://dx.doi.org/10.2196/30946 |
Ejemplares similares
-
Can passive measurement of physiological distress help better predict suicidal thinking?
por: Kleiman, Evan M., et al.
Publicado: (2021) -
Predictive structured–unstructured interactions in EHR models: A case study of suicide prediction
por: Bayramli, Ilkin, et al.
Publicado: (2022) -
Increase in Suicidal Thinking During COVID-19
por: Fortgang, Rebecca G., et al.
Publicado: (2021) -
Improving risk prediction for target subpopulations: Predicting suicidal behaviors among multiple sclerosis patients
por: Barak-Corren, Yuval, et al.
Publicado: (2023) -
A Pilot Study Using Frequent Inpatient Assessments of Suicidal Thinking to Predict Short-Term Postdischarge Suicidal Behavior
por: Wang, Shirley B., et al.
Publicado: (2021)