Cargando…
A Remote Patient-Monitoring System for Intensive Care Medicine: Mixed Methods Human-Centered Design and Usability Evaluation
BACKGROUND: Continuous monitoring of vital signs is critical for ensuring patient safety in intensive care units (ICUs) and is becoming increasingly relevant in general wards. The effectiveness of health information technologies such as patient-monitoring systems is highly determined by usability, t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957007/ https://www.ncbi.nlm.nih.gov/pubmed/35275071 http://dx.doi.org/10.2196/30655 |
_version_ | 1784676679152566272 |
---|---|
author | Poncette, Akira-Sebastian Mosch, Lina Katharina Stablo, Lars Spies, Claudia Schieler, Monique Weber-Carstens, Steffen Feufel, Markus A Balzer, Felix |
author_facet | Poncette, Akira-Sebastian Mosch, Lina Katharina Stablo, Lars Spies, Claudia Schieler, Monique Weber-Carstens, Steffen Feufel, Markus A Balzer, Felix |
author_sort | Poncette, Akira-Sebastian |
collection | PubMed |
description | BACKGROUND: Continuous monitoring of vital signs is critical for ensuring patient safety in intensive care units (ICUs) and is becoming increasingly relevant in general wards. The effectiveness of health information technologies such as patient-monitoring systems is highly determined by usability, the lack of which can ultimately compromise patient safety. Usability problems can be identified and prevented by involving users (ie, clinicians). OBJECTIVE: In this study, we aim to apply a human-centered design approach to evaluate the usability of a remote patient-monitoring system user interface (UI) in the ICU context and conceptualize and evaluate design changes. METHODS: Following institutional review board approval (EA1/031/18), a formative evaluation of the monitoring UI was performed. Simulated use tests with think-aloud protocols were conducted with ICU staff (n=5), and the resulting qualitative data were analyzed using a deductive analytic approach. On the basis of the identified usability problems, we conceptualized informed design changes and applied them to develop an improved prototype of the monitoring UI. Comparing the UIs, we evaluated perceived usability using the System Usability Scale, performance efficiency with the normative path deviation, and effectiveness by measuring the task completion rate (n=5). Measures were tested for statistical significance using a 2-sample t test, Poisson regression with a generalized linear mixed-effects model, and the N-1 chi-square test. P<.05 were considered significant. RESULTS: We found 37 individual usability problems specific to monitoring UI, which could be assigned to six subcodes: usefulness of the system, response time, responsiveness, meaning of labels, function of UI elements, and navigation. Among user ideas and requirements for the UI were high usability, customizability, and the provision of audible alarm notifications. Changes in graphics and design were proposed to allow for better navigation, information retrieval, and spatial orientation. The UI was revised by creating a prototype with a more responsive design and changes regarding labeling and UI elements. Statistical analysis showed that perceived usability improved significantly (System Usability Scale design A: mean 68.5, SD 11.26, n=5; design B: mean 89, SD 4.87, n=5; P=.003), as did performance efficiency (normative path deviation design A: mean 8.8, SD 5.26, n=5; design B: mean 3.2, SD 3.03, n=5; P=.001), and effectiveness (design A: 18 trials, failed 7, 39% times, passed 11, 61% times; design B: 20 trials, failed 0 times, passed 20 times; P=.002). CONCLUSIONS: Usability testing with think-aloud protocols led to a patient-monitoring UI with significantly improved usability, performance, and effectiveness. In the ICU work environment, difficult-to-use technology may result in detrimental outcomes for staff and patients. Technical devices should be designed to support efficient and effective work processes. Our results suggest that this can be achieved by applying basic human-centered design methods and principles. TRIAL REGISTRATION: ClinicalTrials.gov NCT03514173; https://clinicaltrials.gov/ct2/show/NCT03514173 |
format | Online Article Text |
id | pubmed-8957007 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-89570072022-03-27 A Remote Patient-Monitoring System for Intensive Care Medicine: Mixed Methods Human-Centered Design and Usability Evaluation Poncette, Akira-Sebastian Mosch, Lina Katharina Stablo, Lars Spies, Claudia Schieler, Monique Weber-Carstens, Steffen Feufel, Markus A Balzer, Felix JMIR Hum Factors Original Paper BACKGROUND: Continuous monitoring of vital signs is critical for ensuring patient safety in intensive care units (ICUs) and is becoming increasingly relevant in general wards. The effectiveness of health information technologies such as patient-monitoring systems is highly determined by usability, the lack of which can ultimately compromise patient safety. Usability problems can be identified and prevented by involving users (ie, clinicians). OBJECTIVE: In this study, we aim to apply a human-centered design approach to evaluate the usability of a remote patient-monitoring system user interface (UI) in the ICU context and conceptualize and evaluate design changes. METHODS: Following institutional review board approval (EA1/031/18), a formative evaluation of the monitoring UI was performed. Simulated use tests with think-aloud protocols were conducted with ICU staff (n=5), and the resulting qualitative data were analyzed using a deductive analytic approach. On the basis of the identified usability problems, we conceptualized informed design changes and applied them to develop an improved prototype of the monitoring UI. Comparing the UIs, we evaluated perceived usability using the System Usability Scale, performance efficiency with the normative path deviation, and effectiveness by measuring the task completion rate (n=5). Measures were tested for statistical significance using a 2-sample t test, Poisson regression with a generalized linear mixed-effects model, and the N-1 chi-square test. P<.05 were considered significant. RESULTS: We found 37 individual usability problems specific to monitoring UI, which could be assigned to six subcodes: usefulness of the system, response time, responsiveness, meaning of labels, function of UI elements, and navigation. Among user ideas and requirements for the UI were high usability, customizability, and the provision of audible alarm notifications. Changes in graphics and design were proposed to allow for better navigation, information retrieval, and spatial orientation. The UI was revised by creating a prototype with a more responsive design and changes regarding labeling and UI elements. Statistical analysis showed that perceived usability improved significantly (System Usability Scale design A: mean 68.5, SD 11.26, n=5; design B: mean 89, SD 4.87, n=5; P=.003), as did performance efficiency (normative path deviation design A: mean 8.8, SD 5.26, n=5; design B: mean 3.2, SD 3.03, n=5; P=.001), and effectiveness (design A: 18 trials, failed 7, 39% times, passed 11, 61% times; design B: 20 trials, failed 0 times, passed 20 times; P=.002). CONCLUSIONS: Usability testing with think-aloud protocols led to a patient-monitoring UI with significantly improved usability, performance, and effectiveness. In the ICU work environment, difficult-to-use technology may result in detrimental outcomes for staff and patients. Technical devices should be designed to support efficient and effective work processes. Our results suggest that this can be achieved by applying basic human-centered design methods and principles. TRIAL REGISTRATION: ClinicalTrials.gov NCT03514173; https://clinicaltrials.gov/ct2/show/NCT03514173 JMIR Publications 2022-03-11 /pmc/articles/PMC8957007/ /pubmed/35275071 http://dx.doi.org/10.2196/30655 Text en ©Akira-Sebastian Poncette, Lina Katharina Mosch, Lars Stablo, Claudia Spies, Monique Schieler, Steffen Weber-Carstens, Markus A Feufel, Felix Balzer. Originally published in JMIR Human Factors (https://humanfactors.jmir.org), 11.03.2022. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Human Factors, is properly cited. The complete bibliographic information, a link to the original publication on https://humanfactors.jmir.org, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Poncette, Akira-Sebastian Mosch, Lina Katharina Stablo, Lars Spies, Claudia Schieler, Monique Weber-Carstens, Steffen Feufel, Markus A Balzer, Felix A Remote Patient-Monitoring System for Intensive Care Medicine: Mixed Methods Human-Centered Design and Usability Evaluation |
title | A Remote Patient-Monitoring System for Intensive Care Medicine: Mixed Methods Human-Centered Design and Usability Evaluation |
title_full | A Remote Patient-Monitoring System for Intensive Care Medicine: Mixed Methods Human-Centered Design and Usability Evaluation |
title_fullStr | A Remote Patient-Monitoring System for Intensive Care Medicine: Mixed Methods Human-Centered Design and Usability Evaluation |
title_full_unstemmed | A Remote Patient-Monitoring System for Intensive Care Medicine: Mixed Methods Human-Centered Design and Usability Evaluation |
title_short | A Remote Patient-Monitoring System for Intensive Care Medicine: Mixed Methods Human-Centered Design and Usability Evaluation |
title_sort | remote patient-monitoring system for intensive care medicine: mixed methods human-centered design and usability evaluation |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957007/ https://www.ncbi.nlm.nih.gov/pubmed/35275071 http://dx.doi.org/10.2196/30655 |
work_keys_str_mv | AT poncetteakirasebastian aremotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT moschlinakatharina aremotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT stablolars aremotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT spiesclaudia aremotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT schielermonique aremotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT webercarstenssteffen aremotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT feufelmarkusa aremotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT balzerfelix aremotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT poncetteakirasebastian remotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT moschlinakatharina remotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT stablolars remotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT spiesclaudia remotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT schielermonique remotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT webercarstenssteffen remotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT feufelmarkusa remotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation AT balzerfelix remotepatientmonitoringsystemforintensivecaremedicinemixedmethodshumancentereddesignandusabilityevaluation |