Cargando…
Sequencing Reveals Population Structure and Selection Signatures for Reproductive Traits in Yunnan Semi-Fine Wool Sheep (Ovis aries)
Yunnan semi-fine wool sheep are among the most important cultivated sheep breeds in China. However, their population structure, genetic characteristics and traits of interest are poorly studied. In this study, we systematically studied the population characteristics and selection signatures of 40 Yu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957090/ https://www.ncbi.nlm.nih.gov/pubmed/35345667 http://dx.doi.org/10.3389/fgene.2022.812753 |
Sumario: | Yunnan semi-fine wool sheep are among the most important cultivated sheep breeds in China. However, their population structure, genetic characteristics and traits of interest are poorly studied. In this study, we systematically studied the population characteristics and selection signatures of 40 Yunnan semi-fine wool sheep using SNPs obtained from whole-genome resequencing data. A total of 1393 Gb of clean data were acquired. The mapping rate against the reference genome was 91.23% on average (86.01%–92.26%), and the average sequence depth was 9.51X. After filtering, 28,593,198 SNPs and 4,725,259 indels with high quality were obtained. The heterozygosity rate, inbreeding coefficient and effective population size of the sheep were calculated to preliminarily explore their genetic characteristics. The average heterozygosity rate was 0.264, the average inbreeding coefficient was 0.0099, and the effective population size estimated from the heterozygote excess (HE) was 242.9. Based on the Tajima’s D and integrated haplotype score (iHS) approaches, 562 windows and 11,356 core SNPs showed selection signatures in the Yunnan semi-fine wool sheep population. After genome annotation and gene enrichment analysis, we found traces of early domestication in sensory organs, behavioural activity and the nervous system as well as adaptive changes in reproductive and wool traits under selection in this population. Some selected genes related to litter size, including FSHR, BMPR1B and OXT, were identified as being under selection. Specific missense mutations of the FSHR gene that differed from the reference genome were also identified in the population, and we found some SNP variations that may affect litter size. Our findings provide a theoretical basis for the conservation and utilization of Yunnan semi-fine wool sheep. Furthermore, our results reveal some changes common to sheep after domestication and provide a new opportunity to investigate the genetic variation influencing fecundity within a population evolving under artificial selection. |
---|