Cargando…

Conserved protein targets for developing pan-coronavirus drugs based on sequence and 3D structure similarity analyses

There are 7 known human pathogenic coronaviruses, which are HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, MERS-CoV, SARS-CoV and SARS-CoV-2. While SARS-CoV-2 is currently caused a severe epidemic, experts believe that new pathogenic coronavirus would emerge in the future. Therefore, developing broad-s...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Minfei, Yang, Yanqing, Wu, Leyun, Zhou, Liping, Shi, Yulong, Han, Jiaxin, Xu, Zhijian, Zhu, Weiliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957316/
https://www.ncbi.nlm.nih.gov/pubmed/35364304
http://dx.doi.org/10.1016/j.compbiomed.2022.105455
Descripción
Sumario:There are 7 known human pathogenic coronaviruses, which are HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, MERS-CoV, SARS-CoV and SARS-CoV-2. While SARS-CoV-2 is currently caused a severe epidemic, experts believe that new pathogenic coronavirus would emerge in the future. Therefore, developing broad-spectrum anti-coronavirus drugs is of great significance. In this study, we performed protein sequence and three-dimensional structure analyses for all the 20 virus-encoded proteins across all the 7 coronaviruses, with the purpose to identify highly conserved proteins and binding sites for developing pan-coronavirus drugs. We found that nsp5, nsp10, nsp12, nsp13, nsp14, and nsp16 are highly conserved both in protein sequences (with average identity percentage higher than 52%, average amino acid conservation scores higher than 5.2) and binding pockets (with average amino acid conservation scores higher than 5.8). We also performed the similarity comparison between these 6 proteins and all the human proteins, and found that all the 6 proteins have similarity less than 25%, indicating that the drugs targeting the 6 proteins should have little interference of human protein function. Accordingly, we suggest that nsp5, nsp10, nsp12, nsp13, nsp14, and nsp16 are potential targets for pan-coronavirus drug development.