Cargando…

Decision Scheduling for Cloud Computing Tasks Relying on Solving Large Linear Systems of Equations

With the continuous reform and innovation of Internet technology and the continuous development and progress of social economy, Big Data cloud computing technology is more and more widely used in people's work and life. Many parallel algorithms play a very important role in solving large linear...

Descripción completa

Detalles Bibliográficos
Autor principal: He, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957410/
https://www.ncbi.nlm.nih.gov/pubmed/35345804
http://dx.doi.org/10.1155/2022/3411959
Descripción
Sumario:With the continuous reform and innovation of Internet technology and the continuous development and progress of social economy, Big Data cloud computing technology is more and more widely used in people's work and life. Many parallel algorithms play a very important role in solving large linear equations in various applications. To this end, this article aims to propose and summarize a cloud computing task scheduling model that relies on the solution of large linear equations. The method of this paper is to study the technology of solving large-scale linear equations and propose an M-QoS-OCCSM scheduling model. The function of the experimental method is to solve the problem of efficiently executing N mutually dependent parallel tasks within limited resources, while fully satisfying users' expectations of task completion time, bandwidth rate, reliability, and cost. In this paper, the application experiment of large-scale linear equations in task scheduling is used to study task scheduling algorithms. The results show that when the task load is 10 and 20, the convergence speed of the MPQGA algorithm is 32 seconds and 95 seconds faster than that of the BGA algorithm, respectively.