Cargando…
svBreak: A New Approach for the Detection of Structural Variant Breakpoints Based on Convolutional Neural Network
Structural variation (SV) is an important type of genome variation and confers susceptibility to human cancer diseases. Systematic analysis of SVs has become a crucial step for the exploration of mechanisms and precision diagnosis of cancers. The central point is how to accurately detect SV breakpoi...
Autores principales: | Wang, Shaoqiang, Li, Jie, Haque, A K Alvi, Zhao, Haiyong, Yang, Liying, Yuan, Xiguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957449/ https://www.ncbi.nlm.nih.gov/pubmed/35345526 http://dx.doi.org/10.1155/2022/7196040 |
Ejemplares similares
-
Elevated variant density around SV breakpoints in germline lineage lends support to error-prone replication hypothesis
por: Dhokarh, Dhananjay, et al.
Publicado: (2016) -
novoBreak: local assembly for breakpoint detection in cancer genomes
por: Chong, Zechen, et al.
Publicado: (2016) -
MitoBreak: the mitochondrial DNA breakpoints database
por: Damas, Joana, et al.
Publicado: (2014) -
BreakSeek: a breakpoint-based algorithm for full spectral range INDEL detection
por: Zhao, Hui, et al.
Publicado: (2015) -
DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network
por: Cai, Lei, et al.
Publicado: (2019)