Cargando…
A Risk Scoring System Utilizing Machine Learning Methods for Hepatotoxicity Prediction One Year After the Initiation of Tyrosine Kinase Inhibitors
BACKGROUND: There is currently no method to predict tyrosine kinase inhibitor (TKI) -induced hepatotoxicity. The purpose of this study was to propose a risk scoring system for hepatotoxicity induced within one year of TKI administration using machine learning methods. METHODS: This retrospective, mu...
Autores principales: | Han, Ji Min, Yee, Jeong, Cho, Soyeon, Kim, Min Kyoung, Moon, Jin Young, Jung, Dasom, Kim, Jung Sun, Gwak, Hye Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957909/ https://www.ncbi.nlm.nih.gov/pubmed/35350572 http://dx.doi.org/10.3389/fonc.2022.790343 |
Ejemplares similares
-
Machine Learning Approaches to Predict Hepatotoxicity Risk in Patients Receiving Nilotinib
por: Kim, Jung-Sun, et al.
Publicado: (2021) -
Risk factors for erlotinib-induced hepatotoxicity: a retrospective follow-up study
por: Kim, Min Kyoung, et al.
Publicado: (2018) -
Factors Influencing Imatinib-Induced Hepatotoxicity
por: Han, Ji Min, et al.
Publicado: (2020) -
AXL and MET receptor tyrosine kinases are essential for lung cancer metastasis
por: Choi, Yun Jung, et al.
Publicado: (2019) -
Risk Scoring System for Vancomycin-Associated Acute Kidney Injury
por: Kim, Jee Yun, et al.
Publicado: (2022)