Cargando…
A Radiomics Approach to Assess High Risk Carotid Plaques: A Non-invasive Imaging Biomarker, Retrospective Study
OBJECTIVE: This study aimed to construct a radiomics-based MRI sequence from high-resolution magnetic resonance imaging (HRMRI), combined with clinical high-risk factors for non-invasive differentiation of the plaque of symptomatic patients from asyptomatic patients. METHODS: A total of 115 patients...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957977/ https://www.ncbi.nlm.nih.gov/pubmed/35350403 http://dx.doi.org/10.3389/fneur.2022.788652 |
_version_ | 1784676849930993664 |
---|---|
author | Chen, Sihan Liu, Changsheng Chen, Xixiang Liu, Weiyin Vivian Ma, Ling Zha, Yunfei |
author_facet | Chen, Sihan Liu, Changsheng Chen, Xixiang Liu, Weiyin Vivian Ma, Ling Zha, Yunfei |
author_sort | Chen, Sihan |
collection | PubMed |
description | OBJECTIVE: This study aimed to construct a radiomics-based MRI sequence from high-resolution magnetic resonance imaging (HRMRI), combined with clinical high-risk factors for non-invasive differentiation of the plaque of symptomatic patients from asyptomatic patients. METHODS: A total of 115 patients were retrospectively recruited. HRMRI was performed, and patients were diagnosed with symptomatic plaques (SPs) and asymptomatic plaques (ASPs). Patients were randomly divided into training and test groups in the ratio of 7:3. T2WI was used for segmentation and extraction of the texture features. Max-Relevance and Min-Redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) were employed for the optimized model. Radscore was applied to construct a diagnostic model considering the T2WI texture features and patient demography to assess the power in differentiating SPs and ASPs. RESULTS: SPs and ASPs were seen in 75 and 40 patients, respectively. Thirty texture features were selected by mRMR, and LASSO identified a radscore of 16 radiomics features as being related to plaque vulnerability. The radscore, consisting of eight texture features, showed a better diagnostic performance than clinical information, both in the training (area under the curve [AUC], 0.923 vs. 0.713) and test groups (AUC, 0.989 vs. 0.735). The combination model of texture and clinical information had the best performance in assessing lesion vulnerability in both the training (AUC, 0.926) and test groups (AUC, 0.898). CONCLUSION: This study demonstrated that HRMRI texture features provide incremental value for carotid atherosclerotic risk assessment. |
format | Online Article Text |
id | pubmed-8957977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89579772022-03-28 A Radiomics Approach to Assess High Risk Carotid Plaques: A Non-invasive Imaging Biomarker, Retrospective Study Chen, Sihan Liu, Changsheng Chen, Xixiang Liu, Weiyin Vivian Ma, Ling Zha, Yunfei Front Neurol Neurology OBJECTIVE: This study aimed to construct a radiomics-based MRI sequence from high-resolution magnetic resonance imaging (HRMRI), combined with clinical high-risk factors for non-invasive differentiation of the plaque of symptomatic patients from asyptomatic patients. METHODS: A total of 115 patients were retrospectively recruited. HRMRI was performed, and patients were diagnosed with symptomatic plaques (SPs) and asymptomatic plaques (ASPs). Patients were randomly divided into training and test groups in the ratio of 7:3. T2WI was used for segmentation and extraction of the texture features. Max-Relevance and Min-Redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) were employed for the optimized model. Radscore was applied to construct a diagnostic model considering the T2WI texture features and patient demography to assess the power in differentiating SPs and ASPs. RESULTS: SPs and ASPs were seen in 75 and 40 patients, respectively. Thirty texture features were selected by mRMR, and LASSO identified a radscore of 16 radiomics features as being related to plaque vulnerability. The radscore, consisting of eight texture features, showed a better diagnostic performance than clinical information, both in the training (area under the curve [AUC], 0.923 vs. 0.713) and test groups (AUC, 0.989 vs. 0.735). The combination model of texture and clinical information had the best performance in assessing lesion vulnerability in both the training (AUC, 0.926) and test groups (AUC, 0.898). CONCLUSION: This study demonstrated that HRMRI texture features provide incremental value for carotid atherosclerotic risk assessment. Frontiers Media S.A. 2022-03-08 /pmc/articles/PMC8957977/ /pubmed/35350403 http://dx.doi.org/10.3389/fneur.2022.788652 Text en Copyright © 2022 Chen, Liu, Chen, Liu, Ma and Zha. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neurology Chen, Sihan Liu, Changsheng Chen, Xixiang Liu, Weiyin Vivian Ma, Ling Zha, Yunfei A Radiomics Approach to Assess High Risk Carotid Plaques: A Non-invasive Imaging Biomarker, Retrospective Study |
title | A Radiomics Approach to Assess High Risk Carotid Plaques: A Non-invasive Imaging Biomarker, Retrospective Study |
title_full | A Radiomics Approach to Assess High Risk Carotid Plaques: A Non-invasive Imaging Biomarker, Retrospective Study |
title_fullStr | A Radiomics Approach to Assess High Risk Carotid Plaques: A Non-invasive Imaging Biomarker, Retrospective Study |
title_full_unstemmed | A Radiomics Approach to Assess High Risk Carotid Plaques: A Non-invasive Imaging Biomarker, Retrospective Study |
title_short | A Radiomics Approach to Assess High Risk Carotid Plaques: A Non-invasive Imaging Biomarker, Retrospective Study |
title_sort | radiomics approach to assess high risk carotid plaques: a non-invasive imaging biomarker, retrospective study |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957977/ https://www.ncbi.nlm.nih.gov/pubmed/35350403 http://dx.doi.org/10.3389/fneur.2022.788652 |
work_keys_str_mv | AT chensihan aradiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT liuchangsheng aradiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT chenxixiang aradiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT liuweiyinvivian aradiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT maling aradiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT zhayunfei aradiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT chensihan radiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT liuchangsheng radiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT chenxixiang radiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT liuweiyinvivian radiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT maling radiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy AT zhayunfei radiomicsapproachtoassesshighriskcarotidplaquesanoninvasiveimagingbiomarkerretrospectivestudy |