Cargando…

Geometric energy transfer in two-component systems

Factoring a wave function into marginal and conditional factors partitions the subsystem kinetic energy into two terms. The first depends solely on the marginal wave function, through its gauge-covariant derivative, while the second depends on the quantum metric of the conditional wave function over...

Descripción completa

Detalles Bibliográficos
Autores principales: Requist, Ryan, Li, Chen, Gross, Eberhard K. U.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958278/
https://www.ncbi.nlm.nih.gov/pubmed/35341302
http://dx.doi.org/10.1098/rsta.2020.0383
_version_ 1784676913163272192
author Requist, Ryan
Li, Chen
Gross, Eberhard K. U.
author_facet Requist, Ryan
Li, Chen
Gross, Eberhard K. U.
author_sort Requist, Ryan
collection PubMed
description Factoring a wave function into marginal and conditional factors partitions the subsystem kinetic energy into two terms. The first depends solely on the marginal wave function, through its gauge-covariant derivative, while the second depends on the quantum metric of the conditional wave function over the manifold of marginal variables. We derive an identity for the rate of change of the second term. This article is part of the theme issue ‘Chemistry without the Born–Oppenheimer approximation’.
format Online
Article
Text
id pubmed-8958278
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-89582782022-04-12 Geometric energy transfer in two-component systems Requist, Ryan Li, Chen Gross, Eberhard K. U. Philos Trans A Math Phys Eng Sci Articles Factoring a wave function into marginal and conditional factors partitions the subsystem kinetic energy into two terms. The first depends solely on the marginal wave function, through its gauge-covariant derivative, while the second depends on the quantum metric of the conditional wave function over the manifold of marginal variables. We derive an identity for the rate of change of the second term. This article is part of the theme issue ‘Chemistry without the Born–Oppenheimer approximation’. The Royal Society 2022-05-16 2022-03-28 /pmc/articles/PMC8958278/ /pubmed/35341302 http://dx.doi.org/10.1098/rsta.2020.0383 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Requist, Ryan
Li, Chen
Gross, Eberhard K. U.
Geometric energy transfer in two-component systems
title Geometric energy transfer in two-component systems
title_full Geometric energy transfer in two-component systems
title_fullStr Geometric energy transfer in two-component systems
title_full_unstemmed Geometric energy transfer in two-component systems
title_short Geometric energy transfer in two-component systems
title_sort geometric energy transfer in two-component systems
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958278/
https://www.ncbi.nlm.nih.gov/pubmed/35341302
http://dx.doi.org/10.1098/rsta.2020.0383
work_keys_str_mv AT requistryan geometricenergytransferintwocomponentsystems
AT lichen geometricenergytransferintwocomponentsystems
AT grosseberhardku geometricenergytransferintwocomponentsystems