Cargando…

Tiglon enables accurate transcriptome assembly via integrating mappings of different aligners

Full-length transcript reconstruction has a pivotal role in RNA-seq data analysis. In this research, we present a new genome-guided transcriptome assembly algorithm, namely Tiglon, which integrates multiple alignments of different mapping tools and builds the labeled splice graphs, followed by a lab...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xiaoyu, Yu, Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958329/
https://www.ncbi.nlm.nih.gov/pubmed/35355524
http://dx.doi.org/10.1016/j.isci.2022.104067
Descripción
Sumario:Full-length transcript reconstruction has a pivotal role in RNA-seq data analysis. In this research, we present a new genome-guided transcriptome assembly algorithm, namely Tiglon, which integrates multiple alignments of different mapping tools and builds the labeled splice graphs, followed by a label-based dynamic path-searching strategy to reconstruct the transcripts. We evaluate Tiglon on a simulated dataset and 12 real datasets under the Hisat2 and Star mappings. The results indicate that the integrating techniques of Tiglon exhibit great superiority over the state-of-the-art assemblers, including StringTie2 and Scallop, depending on Hisat2 alignments, Star alignments, or the merged alignments of both. Especially, Tiglon is significantly powerful in recovering lowly expressed transcripts.