Cargando…
Tiglon enables accurate transcriptome assembly via integrating mappings of different aligners
Full-length transcript reconstruction has a pivotal role in RNA-seq data analysis. In this research, we present a new genome-guided transcriptome assembly algorithm, namely Tiglon, which integrates multiple alignments of different mapping tools and builds the labeled splice graphs, followed by a lab...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958329/ https://www.ncbi.nlm.nih.gov/pubmed/35355524 http://dx.doi.org/10.1016/j.isci.2022.104067 |
Sumario: | Full-length transcript reconstruction has a pivotal role in RNA-seq data analysis. In this research, we present a new genome-guided transcriptome assembly algorithm, namely Tiglon, which integrates multiple alignments of different mapping tools and builds the labeled splice graphs, followed by a label-based dynamic path-searching strategy to reconstruct the transcripts. We evaluate Tiglon on a simulated dataset and 12 real datasets under the Hisat2 and Star mappings. The results indicate that the integrating techniques of Tiglon exhibit great superiority over the state-of-the-art assemblers, including StringTie2 and Scallop, depending on Hisat2 alignments, Star alignments, or the merged alignments of both. Especially, Tiglon is significantly powerful in recovering lowly expressed transcripts. |
---|