Cargando…

Electrothermally tunable terahertz cross-shaped metamaterial for opto-logic operation characteristics

We propose and demonstrate a metamaterial design by integrating a microelectromechanical system (MEMS) electrothermal actuator (ETA) platform and a cross-shaped metamaterial (CSM) to perform opto-logic function characteristics. Reconfigurable and stretchable mechanisms of CSM are achieved by driving...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Ruijia, Xu, Xiaocan, Lin, Yu-Sheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958362/
https://www.ncbi.nlm.nih.gov/pubmed/35355519
http://dx.doi.org/10.1016/j.isci.2022.104072
Descripción
Sumario:We propose and demonstrate a metamaterial design by integrating a microelectromechanical system (MEMS) electrothermal actuator (ETA) platform and a cross-shaped metamaterial (CSM) to perform opto-logic function characteristics. Reconfigurable and stretchable mechanisms of CSM are achieved by driving different DC bias voltages on ETA to improve the limitations induced by the conventional use of the flexible substrate. The optical responses of CSM are tunable by the electrical signals inputs. By driving a DC bias voltage of 0.20 V, a tuning range of CSM is 0.54 THz is obtained and it and provides perfect zero-transmission characteristics. In addition, the “XNOR” logic gate function of CSM is realized at 1.20 THz, which plays a key role in the all opto-logic network communication system. The proposed MEMS-based CSM exhibits potential applications in logical operation, signal modulation, optical switching, THz imaging, and so on.