Cargando…
Predicting diagnosis 4 years prior to Alzheimer’s disease incident
This study employed a deep learning longitudinal model, graph convolutional and recurrent neural network (graph-CNN-RNN), on a series of brain structural MRI scans for AD prognosis. It characterized whole-brain morphology via incorporating longitudinal cortical and subcortical morphology and defined...
Autores principales: | Qiu, Anqi, Xu, Liyuan, Liu, Chaoqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958535/ https://www.ncbi.nlm.nih.gov/pubmed/35344803 http://dx.doi.org/10.1016/j.nicl.2022.102993 |
Ejemplares similares
-
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations
por: Wee, Chong-Yaw, et al.
Publicado: (2019) -
Spatial correlation maps of the hippocampus with cerebrospinal fluid biomarkers and cognition in Alzheimer's disease: A longitudinal study
por: Liu, Guodong, et al.
Publicado: (2021) -
Metabolism-related brain morphology accelerates aging and predicts neurodegenerative diseases and stroke: a UK Biobank study
por: Shen, Chenye, et al.
Publicado: (2023) -
Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
por: Bron, Esther E., et al.
Publicado: (2021) -
Mathematical model and artificial intelligence for diagnosis of Alzheimer’s disease
por: Davodabadi, Afsaneh, et al.
Publicado: (2023)