Cargando…
Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum
Tannins are secondary metabolites that are enriched in the bark, roots, and knots in trees and are known to hinder microbial attack. The biological degradation of water-soluble gallotannins, such as tannic acid, is initiated by tannase enzymes (EC 3.1.1.20), which are esterases able to liberate gall...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958541/ https://www.ncbi.nlm.nih.gov/pubmed/35202648 http://dx.doi.org/10.1016/j.jbc.2022.101758 |
_version_ | 1784676965287985152 |
---|---|
author | Ristinmaa, Amanda Sörensen Coleman, Tom Cesar, Leona Langborg Weinmann, Annika Mazurkewich, Scott Brändén, Gisela Hasani, Merima Larsbrink, Johan |
author_facet | Ristinmaa, Amanda Sörensen Coleman, Tom Cesar, Leona Langborg Weinmann, Annika Mazurkewich, Scott Brändén, Gisela Hasani, Merima Larsbrink, Johan |
author_sort | Ristinmaa, Amanda Sörensen |
collection | PubMed |
description | Tannins are secondary metabolites that are enriched in the bark, roots, and knots in trees and are known to hinder microbial attack. The biological degradation of water-soluble gallotannins, such as tannic acid, is initiated by tannase enzymes (EC 3.1.1.20), which are esterases able to liberate gallic acid from aromatic-sugar complexes. However, only few tannases have previously been studied in detail. Here, for the first time, we biochemically and structurally characterize three tannases from a single organism, the anaerobic bacterium Clostridium butyricum, which inhabits both soil and gut environments. The enzymes were named CbTan1-3, and we show that each one exhibits a unique substrate preference on a range of galloyl ester model substrates; CbTan1 and 3 demonstrated preference toward galloyl esters linked to glucose, while CbTan2 was more promiscuous. All enzymes were also active on oak bark extractives. Furthermore, we solved the crystal structure of CbTan2 and produced homology models for CbTan1 and 3. In each structure, the catalytic triad and gallate-binding regions in the core domain were found in very similar positions in the active site compared with other bacterial tannases, suggesting a similar mechanism of action among these enzymes, though large inserts in each enzyme showcase overall structural diversity. In conclusion, the varied structural features and substrate specificities of the C. butyricum tannases indicate that they have different biological roles and could further be used in development of new valorization strategies for renewable plant biomass. |
format | Online Article Text |
id | pubmed-8958541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-89585412022-03-31 Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum Ristinmaa, Amanda Sörensen Coleman, Tom Cesar, Leona Langborg Weinmann, Annika Mazurkewich, Scott Brändén, Gisela Hasani, Merima Larsbrink, Johan J Biol Chem Research Article Tannins are secondary metabolites that are enriched in the bark, roots, and knots in trees and are known to hinder microbial attack. The biological degradation of water-soluble gallotannins, such as tannic acid, is initiated by tannase enzymes (EC 3.1.1.20), which are esterases able to liberate gallic acid from aromatic-sugar complexes. However, only few tannases have previously been studied in detail. Here, for the first time, we biochemically and structurally characterize three tannases from a single organism, the anaerobic bacterium Clostridium butyricum, which inhabits both soil and gut environments. The enzymes were named CbTan1-3, and we show that each one exhibits a unique substrate preference on a range of galloyl ester model substrates; CbTan1 and 3 demonstrated preference toward galloyl esters linked to glucose, while CbTan2 was more promiscuous. All enzymes were also active on oak bark extractives. Furthermore, we solved the crystal structure of CbTan2 and produced homology models for CbTan1 and 3. In each structure, the catalytic triad and gallate-binding regions in the core domain were found in very similar positions in the active site compared with other bacterial tannases, suggesting a similar mechanism of action among these enzymes, though large inserts in each enzyme showcase overall structural diversity. In conclusion, the varied structural features and substrate specificities of the C. butyricum tannases indicate that they have different biological roles and could further be used in development of new valorization strategies for renewable plant biomass. American Society for Biochemistry and Molecular Biology 2022-02-21 /pmc/articles/PMC8958541/ /pubmed/35202648 http://dx.doi.org/10.1016/j.jbc.2022.101758 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Ristinmaa, Amanda Sörensen Coleman, Tom Cesar, Leona Langborg Weinmann, Annika Mazurkewich, Scott Brändén, Gisela Hasani, Merima Larsbrink, Johan Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum |
title | Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum |
title_full | Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum |
title_fullStr | Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum |
title_full_unstemmed | Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum |
title_short | Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum |
title_sort | structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium clostridium butyricum |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958541/ https://www.ncbi.nlm.nih.gov/pubmed/35202648 http://dx.doi.org/10.1016/j.jbc.2022.101758 |
work_keys_str_mv | AT ristinmaaamandasorensen structuraldiversityandsubstratepreferencesofthreetannaseenzymesencodedbytheanaerobicbacteriumclostridiumbutyricum AT colemantom structuraldiversityandsubstratepreferencesofthreetannaseenzymesencodedbytheanaerobicbacteriumclostridiumbutyricum AT cesarleona structuraldiversityandsubstratepreferencesofthreetannaseenzymesencodedbytheanaerobicbacteriumclostridiumbutyricum AT langborgweinmannannika structuraldiversityandsubstratepreferencesofthreetannaseenzymesencodedbytheanaerobicbacteriumclostridiumbutyricum AT mazurkewichscott structuraldiversityandsubstratepreferencesofthreetannaseenzymesencodedbytheanaerobicbacteriumclostridiumbutyricum AT brandengisela structuraldiversityandsubstratepreferencesofthreetannaseenzymesencodedbytheanaerobicbacteriumclostridiumbutyricum AT hasanimerima structuraldiversityandsubstratepreferencesofthreetannaseenzymesencodedbytheanaerobicbacteriumclostridiumbutyricum AT larsbrinkjohan structuraldiversityandsubstratepreferencesofthreetannaseenzymesencodedbytheanaerobicbacteriumclostridiumbutyricum |