Cargando…
Essence determines phenomenon: Assaying the material properties of biological condensates
Intracellular spaces are partitioned into separate compartments to ensure that numerous biochemical reactions and cellular functions take place in a spatiotemporally controlled manner. Biomacromolecules including proteins and RNAs undergo liquid–liquid phase separation and subsequent phase transitio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958544/ https://www.ncbi.nlm.nih.gov/pubmed/35245500 http://dx.doi.org/10.1016/j.jbc.2022.101782 |
Sumario: | Intracellular spaces are partitioned into separate compartments to ensure that numerous biochemical reactions and cellular functions take place in a spatiotemporally controlled manner. Biomacromolecules including proteins and RNAs undergo liquid–liquid phase separation and subsequent phase transition to form biological condensates with diverse material states. The material/physical properties of biological condensates are crucial for fulfilling their distinct physiological functions, and abnormal material properties can cause deleterious effects under pathological conditions. Here, we review recent studies showing the role of the material properties of biological condensates in their physiological functions. We also summarize several classic methods as well as newly emerging techniques for characterization and/or measurement of the material properties of biological condensates. |
---|