Cargando…

An analytical framework for interpretable and generalizable single-cell data analysis

Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here we developed a ‘linearly interpretable’ framework that combines the interp...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Jian, Troyanskaya, Olga G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959118/
https://www.ncbi.nlm.nih.gov/pubmed/34725480
http://dx.doi.org/10.1038/s41592-021-01286-1
Descripción
Sumario:Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here we developed a ‘linearly interpretable’ framework that combines the interpretability and transferability of linear methods with the representational power of nonlinear methods. Within this framework, we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory, and surface estimation and allows their confidence set inference.