Cargando…
An analytical framework for interpretable and generalizable single-cell data analysis
Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here we developed a ‘linearly interpretable’ framework that combines the interp...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959118/ https://www.ncbi.nlm.nih.gov/pubmed/34725480 http://dx.doi.org/10.1038/s41592-021-01286-1 |
_version_ | 1784677079173824512 |
---|---|
author | Zhou, Jian Troyanskaya, Olga G. |
author_facet | Zhou, Jian Troyanskaya, Olga G. |
author_sort | Zhou, Jian |
collection | PubMed |
description | Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here we developed a ‘linearly interpretable’ framework that combines the interpretability and transferability of linear methods with the representational power of nonlinear methods. Within this framework, we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory, and surface estimation and allows their confidence set inference. |
format | Online Article Text |
id | pubmed-8959118 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-89591182022-05-01 An analytical framework for interpretable and generalizable single-cell data analysis Zhou, Jian Troyanskaya, Olga G. Nat Methods Article Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here we developed a ‘linearly interpretable’ framework that combines the interpretability and transferability of linear methods with the representational power of nonlinear methods. Within this framework, we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory, and surface estimation and allows their confidence set inference. 2021-11 2021-11-01 /pmc/articles/PMC8959118/ /pubmed/34725480 http://dx.doi.org/10.1038/s41592-021-01286-1 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
spellingShingle | Article Zhou, Jian Troyanskaya, Olga G. An analytical framework for interpretable and generalizable single-cell data analysis |
title | An analytical framework for interpretable and generalizable single-cell data analysis |
title_full | An analytical framework for interpretable and generalizable single-cell data analysis |
title_fullStr | An analytical framework for interpretable and generalizable single-cell data analysis |
title_full_unstemmed | An analytical framework for interpretable and generalizable single-cell data analysis |
title_short | An analytical framework for interpretable and generalizable single-cell data analysis |
title_sort | analytical framework for interpretable and generalizable single-cell data analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959118/ https://www.ncbi.nlm.nih.gov/pubmed/34725480 http://dx.doi.org/10.1038/s41592-021-01286-1 |
work_keys_str_mv | AT zhoujian ananalyticalframeworkforinterpretableandgeneralizablesinglecelldataanalysis AT troyanskayaolgag ananalyticalframeworkforinterpretableandgeneralizablesinglecelldataanalysis AT zhoujian analyticalframeworkforinterpretableandgeneralizablesinglecelldataanalysis AT troyanskayaolgag analyticalframeworkforinterpretableandgeneralizablesinglecelldataanalysis |