Cargando…

An analytical framework for interpretable and generalizable single-cell data analysis

Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here we developed a ‘linearly interpretable’ framework that combines the interp...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Jian, Troyanskaya, Olga G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959118/
https://www.ncbi.nlm.nih.gov/pubmed/34725480
http://dx.doi.org/10.1038/s41592-021-01286-1
_version_ 1784677079173824512
author Zhou, Jian
Troyanskaya, Olga G.
author_facet Zhou, Jian
Troyanskaya, Olga G.
author_sort Zhou, Jian
collection PubMed
description Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here we developed a ‘linearly interpretable’ framework that combines the interpretability and transferability of linear methods with the representational power of nonlinear methods. Within this framework, we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory, and surface estimation and allows their confidence set inference.
format Online
Article
Text
id pubmed-8959118
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-89591182022-05-01 An analytical framework for interpretable and generalizable single-cell data analysis Zhou, Jian Troyanskaya, Olga G. Nat Methods Article Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here we developed a ‘linearly interpretable’ framework that combines the interpretability and transferability of linear methods with the representational power of nonlinear methods. Within this framework, we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory, and surface estimation and allows their confidence set inference. 2021-11 2021-11-01 /pmc/articles/PMC8959118/ /pubmed/34725480 http://dx.doi.org/10.1038/s41592-021-01286-1 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
spellingShingle Article
Zhou, Jian
Troyanskaya, Olga G.
An analytical framework for interpretable and generalizable single-cell data analysis
title An analytical framework for interpretable and generalizable single-cell data analysis
title_full An analytical framework for interpretable and generalizable single-cell data analysis
title_fullStr An analytical framework for interpretable and generalizable single-cell data analysis
title_full_unstemmed An analytical framework for interpretable and generalizable single-cell data analysis
title_short An analytical framework for interpretable and generalizable single-cell data analysis
title_sort analytical framework for interpretable and generalizable single-cell data analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959118/
https://www.ncbi.nlm.nih.gov/pubmed/34725480
http://dx.doi.org/10.1038/s41592-021-01286-1
work_keys_str_mv AT zhoujian ananalyticalframeworkforinterpretableandgeneralizablesinglecelldataanalysis
AT troyanskayaolgag ananalyticalframeworkforinterpretableandgeneralizablesinglecelldataanalysis
AT zhoujian analyticalframeworkforinterpretableandgeneralizablesinglecelldataanalysis
AT troyanskayaolgag analyticalframeworkforinterpretableandgeneralizablesinglecelldataanalysis