Cargando…
An analytical framework for interpretable and generalizable single-cell data analysis
Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here we developed a ‘linearly interpretable’ framework that combines the interp...
Autores principales: | Zhou, Jian, Troyanskaya, Olga G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959118/ https://www.ncbi.nlm.nih.gov/pubmed/34725480 http://dx.doi.org/10.1038/s41592-021-01286-1 |
Ejemplares similares
-
Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease
por: Jin, Dan, et al.
Publicado: (2020) -
Extensions of the External Validation for Checking Learned Model Interpretability and Generalizability
por: Ho, Sung Yang, et al.
Publicado: (2020) -
Automated single-cell omics end-to-end framework with data-driven batch inference
por: Wang, Yuan, et al.
Publicado: (2023) -
A Unified Framework on Generalizability of Clinical Prediction Models
por: Wan, Bohua, et al.
Publicado: (2022) -
A generalizable one health framework for the control of zoonotic diseases
por: Ghai, Ria R., et al.
Publicado: (2022)