Cargando…
Quantifying brain state transition cost via Schrödinger Bridge
Quantifying brain state transition cost is a fundamental problem in systems neuroscience. Previous studies utilized network control theory to measure the cost by considering a neural system as a deterministic dynamical system. However, this approach does not capture the stochasticity of neural syste...
Autores principales: | Kawakita, Genji, Kamiya, Shunsuke, Sasai, Shuntaro, Kitazono, Jun, Oizumi, Masafumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959122/ https://www.ncbi.nlm.nih.gov/pubmed/35356194 http://dx.doi.org/10.1162/netn_a_00213 |
Ejemplares similares
-
Optimal Control Costs of Brain State Transitions in Linear Stochastic Systems
por: Kamiya, Shunsuke, et al.
Publicado: (2023) -
Solving Schrödinger Bridges via Maximum Likelihood
por: Vargas, Francisco, et al.
Publicado: (2021) -
Bidirectionally connected cores in a mouse connectome: towards extracting the brain subnetworks essential for consciousness
por: Kitazono, Jun, et al.
Publicado: (2022) -
Stimulus Set Meaningfulness and Neurophysiological Differentiation: A Functional Magnetic Resonance Imaging Study
por: Boly, Melanie, et al.
Publicado: (2015) -
A Score-Based Approach for Training Schrödinger Bridges for Data Modelling
por: Winkler, Ludwig, et al.
Publicado: (2023)