Cargando…

Application of Transcriptomics for Predicting Protein Interaction Networks, Drug Targets and Drug Candidates

Protein interaction pathways and networks are critically-required for a vast range of biological processes. Improved discovery of candidate druggable proteins within specific cell, tissue and disease contexts will aid development of new treatments. Predicting protein interaction networks from gene e...

Descripción completa

Detalles Bibliográficos
Autores principales: Kankanige, Dulshani, Liyanage, Liwan, O'Connor, Michael D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959405/
https://www.ncbi.nlm.nih.gov/pubmed/35356062
http://dx.doi.org/10.3389/fmedt.2022.693148
_version_ 1784677145532956672
author Kankanige, Dulshani
Liyanage, Liwan
O'Connor, Michael D.
author_facet Kankanige, Dulshani
Liyanage, Liwan
O'Connor, Michael D.
author_sort Kankanige, Dulshani
collection PubMed
description Protein interaction pathways and networks are critically-required for a vast range of biological processes. Improved discovery of candidate druggable proteins within specific cell, tissue and disease contexts will aid development of new treatments. Predicting protein interaction networks from gene expression data can provide valuable insights into normal and disease biology. For example, the resulting protein networks can be used to identify potentially druggable targets and drug candidates for testing in cell and animal disease models. The advent of whole-transcriptome expression profiling techniques—that catalogue protein-coding genes expressed within cells and tissues—has enabled development of individual algorithms for particular tasks. For example,: (i) gene ontology algorithms that predict gene/protein subsets involved in related cell processes; (ii) algorithms that predict intracellular protein interaction pathways; and (iii) algorithms that correlate druggable protein targets with known drugs and/or drug candidates. This review examines approaches, advantages and disadvantages of existing gene expression, gene ontology, and protein network prediction algorithms. Using this framework, we examine current efforts to combine these algorithms into pipelines to enable identification of druggable targets, and associated known drugs, using gene expression datasets. In doing so, new opportunities are identified for development of powerful algorithm pipelines, suitable for wide use by non-bioinformaticians, that can predict protein interaction networks, druggable proteins, and related drugs from user gene expression datasets.
format Online
Article
Text
id pubmed-8959405
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-89594052022-03-29 Application of Transcriptomics for Predicting Protein Interaction Networks, Drug Targets and Drug Candidates Kankanige, Dulshani Liyanage, Liwan O'Connor, Michael D. Front Med Technol Medical Technology Protein interaction pathways and networks are critically-required for a vast range of biological processes. Improved discovery of candidate druggable proteins within specific cell, tissue and disease contexts will aid development of new treatments. Predicting protein interaction networks from gene expression data can provide valuable insights into normal and disease biology. For example, the resulting protein networks can be used to identify potentially druggable targets and drug candidates for testing in cell and animal disease models. The advent of whole-transcriptome expression profiling techniques—that catalogue protein-coding genes expressed within cells and tissues—has enabled development of individual algorithms for particular tasks. For example,: (i) gene ontology algorithms that predict gene/protein subsets involved in related cell processes; (ii) algorithms that predict intracellular protein interaction pathways; and (iii) algorithms that correlate druggable protein targets with known drugs and/or drug candidates. This review examines approaches, advantages and disadvantages of existing gene expression, gene ontology, and protein network prediction algorithms. Using this framework, we examine current efforts to combine these algorithms into pipelines to enable identification of druggable targets, and associated known drugs, using gene expression datasets. In doing so, new opportunities are identified for development of powerful algorithm pipelines, suitable for wide use by non-bioinformaticians, that can predict protein interaction networks, druggable proteins, and related drugs from user gene expression datasets. Frontiers Media S.A. 2022-03-09 /pmc/articles/PMC8959405/ /pubmed/35356062 http://dx.doi.org/10.3389/fmedt.2022.693148 Text en Copyright © 2022 Kankanige, Liyanage and O'Connor. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Medical Technology
Kankanige, Dulshani
Liyanage, Liwan
O'Connor, Michael D.
Application of Transcriptomics for Predicting Protein Interaction Networks, Drug Targets and Drug Candidates
title Application of Transcriptomics for Predicting Protein Interaction Networks, Drug Targets and Drug Candidates
title_full Application of Transcriptomics for Predicting Protein Interaction Networks, Drug Targets and Drug Candidates
title_fullStr Application of Transcriptomics for Predicting Protein Interaction Networks, Drug Targets and Drug Candidates
title_full_unstemmed Application of Transcriptomics for Predicting Protein Interaction Networks, Drug Targets and Drug Candidates
title_short Application of Transcriptomics for Predicting Protein Interaction Networks, Drug Targets and Drug Candidates
title_sort application of transcriptomics for predicting protein interaction networks, drug targets and drug candidates
topic Medical Technology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959405/
https://www.ncbi.nlm.nih.gov/pubmed/35356062
http://dx.doi.org/10.3389/fmedt.2022.693148
work_keys_str_mv AT kankanigedulshani applicationoftranscriptomicsforpredictingproteininteractionnetworksdrugtargetsanddrugcandidates
AT liyanageliwan applicationoftranscriptomicsforpredictingproteininteractionnetworksdrugtargetsanddrugcandidates
AT oconnormichaeld applicationoftranscriptomicsforpredictingproteininteractionnetworksdrugtargetsanddrugcandidates