Cargando…
Kernel Density Estimation of Electromyographic Signals and Ensemble Learning for Highly Accurate Classification of a Large Set of Hand/Wrist Motions
The performance of myoelectric control highly depends on the features extracted from surface electromyographic (sEMG) signals. We propose three new sEMG features based on the kernel density estimation. The trimmed mean of density (TMD), the entropy of density, and the trimmed mean absolute value of...
Autores principales: | Ghaderi, Parviz, Nosouhi, Marjan, Jordanic, Mislav, Marateb, Hamid Reza, Mañanas, Miguel Angel, Farina, Dario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959430/ https://www.ncbi.nlm.nih.gov/pubmed/35356057 http://dx.doi.org/10.3389/fnins.2022.796711 |
Ejemplares similares
-
A Novel Spatial Feature for the Identification of Motor Tasks Using High-Density Electromyography
por: Jordanić, Mislav, et al.
Publicado: (2017) -
High-density surface electromyography signals during isometric contractions of elbow muscles of healthy humans
por: Rojas-Martínez, Mónica, et al.
Publicado: (2020) -
A Hybrid Computer-aided-diagnosis System for Prediction of Breast Cancer Recurrence (HPBCR) Using Optimized Ensemble Learning
por: Mohebian, Mohammad R., et al.
Publicado: (2016) -
A real-time and convex model for the estimation of muscle force from surface electromyographic signals in the upper and lower limbs
por: Shirzadi, Mehdi, et al.
Publicado: (2023) -
Spatial distribution of HD-EMG improves identification of task and force in patients with incomplete spinal cord injury
por: Jordanic, Mislav, et al.
Publicado: (2016)