Cargando…
Mind Your Manners! A Dataset and a Continual Learning Approach for Assessing Social Appropriateness of Robot Actions
To date, endowing robots with an ability to assess social appropriateness of their actions has not been possible. This has been mainly due to (i) the lack of relevant and labelled data and (ii) the lack of formulations of this as a lifelong learning problem. In this paper, we address these two issue...
Autores principales: | Tjomsland, Jonas, Kalkan, Sinan, Gunes, Hatice |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959540/ https://www.ncbi.nlm.nih.gov/pubmed/35356061 http://dx.doi.org/10.3389/frobt.2022.669420 |
Ejemplares similares
-
Affect-Driven Learning of Robot Behaviour for Collaborative Human-Robot Interactions
por: Churamani, Nikhil, et al.
Publicado: (2022) -
I Am Looking for Your Mind: Pupil Dilation Predicts Individual Differences in Sensitivity to Hints of Human-Likeness in Robot Behavior
por: Marchesi, Serena, et al.
Publicado: (2021) -
Integrated Cognitive Architecture for Robot Learning of Action and Language
por: Miyazawa, Kazuki, et al.
Publicado: (2019) -
Recent trends in robot learning and evolution for swarm robotics
por: Kuckling, Jonas
Publicado: (2023) -
Characterizing Continuous Manipulation Families for Dexterous Soft Robot Hands
por: Sun, Jiatian, et al.
Publicado: (2021)