Cargando…
Novel Decellularization Method for Tissue Slices
Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue’s vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959585/ https://www.ncbi.nlm.nih.gov/pubmed/35356779 http://dx.doi.org/10.3389/fbioe.2022.832178 |
_version_ | 1784677189356093440 |
---|---|
author | Narciso, Maria Ulldemolins, Anna Júnior, Constança Otero, Jorge Navajas, Daniel Farré, Ramon Gavara, Núria Almendros, Isaac |
author_facet | Narciso, Maria Ulldemolins, Anna Júnior, Constança Otero, Jorge Navajas, Daniel Farré, Ramon Gavara, Núria Almendros, Isaac |
author_sort | Narciso, Maria |
collection | PubMed |
description | Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue’s vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native as well as decellularized tissue slices side by side, but an optimal protocol has not yet been established to address this need. Thus, the main goal of this work was to develop a fast and efficient decellularization method for tissue slices—with an emphasis on lung—while attached to a glass slide. To this end, different decellularizing agents were compared for their effectiveness in cellular removal while preserving the extracellular matrix. The intensity of DNA staining was taken as an indicator of remaining cells and compared to untreated sections. The presence of collagen, elastin and laminin were quantified using immunostaining and signal quantification. Scaffolds resulting from the optimized protocol were mechanically characterized using atomic force microscopy. Lung scaffolds were recellularized with mesenchymal stromal cells to assess their biocompatibility. Some decellularization agents (CHAPS, triton, and ammonia hydroxide) did not achieve sufficient cell removal. Sodium dodecyl sulfate (SDS) was effective in cell removal (1% remaining DNA signal), but its sharp reduction of elastin signal (only 6% remained) plus lower attachment ratio (32%) singled out sodium deoxycholate (SD) as the optimal treatment for this application (6.5% remaining DNA signal), due to its higher elastin retention (34%) and higher attachment ratio (60%). Laminin and collagen were fully preserved in all treatments. The SD decellularization protocol was also successful for porcine and murine (mice and rat) lungs as well as for other tissues such as the heart, kidney, and bladder. No significant mechanical differences were found before and after sample decellularization. The resulting acellular lung scaffolds were shown to be biocompatible (98% cell survival after 72 h of culture). This novel method to decellularize tissue slices opens up new methodological possibilities to better understand the role of the extracellular matrix in the context of several diseases as well as tissue engineering research and can be easily adapted for scarce samples like clinical biopsies. |
format | Online Article Text |
id | pubmed-8959585 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89595852022-03-29 Novel Decellularization Method for Tissue Slices Narciso, Maria Ulldemolins, Anna Júnior, Constança Otero, Jorge Navajas, Daniel Farré, Ramon Gavara, Núria Almendros, Isaac Front Bioeng Biotechnol Bioengineering and Biotechnology Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue’s vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native as well as decellularized tissue slices side by side, but an optimal protocol has not yet been established to address this need. Thus, the main goal of this work was to develop a fast and efficient decellularization method for tissue slices—with an emphasis on lung—while attached to a glass slide. To this end, different decellularizing agents were compared for their effectiveness in cellular removal while preserving the extracellular matrix. The intensity of DNA staining was taken as an indicator of remaining cells and compared to untreated sections. The presence of collagen, elastin and laminin were quantified using immunostaining and signal quantification. Scaffolds resulting from the optimized protocol were mechanically characterized using atomic force microscopy. Lung scaffolds were recellularized with mesenchymal stromal cells to assess their biocompatibility. Some decellularization agents (CHAPS, triton, and ammonia hydroxide) did not achieve sufficient cell removal. Sodium dodecyl sulfate (SDS) was effective in cell removal (1% remaining DNA signal), but its sharp reduction of elastin signal (only 6% remained) plus lower attachment ratio (32%) singled out sodium deoxycholate (SD) as the optimal treatment for this application (6.5% remaining DNA signal), due to its higher elastin retention (34%) and higher attachment ratio (60%). Laminin and collagen were fully preserved in all treatments. The SD decellularization protocol was also successful for porcine and murine (mice and rat) lungs as well as for other tissues such as the heart, kidney, and bladder. No significant mechanical differences were found before and after sample decellularization. The resulting acellular lung scaffolds were shown to be biocompatible (98% cell survival after 72 h of culture). This novel method to decellularize tissue slices opens up new methodological possibilities to better understand the role of the extracellular matrix in the context of several diseases as well as tissue engineering research and can be easily adapted for scarce samples like clinical biopsies. Frontiers Media S.A. 2022-03-09 /pmc/articles/PMC8959585/ /pubmed/35356779 http://dx.doi.org/10.3389/fbioe.2022.832178 Text en Copyright © 2022 Narciso, Ulldemolins, Júnior, Otero, Navajas, Farré, Gavara and Almendros. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Narciso, Maria Ulldemolins, Anna Júnior, Constança Otero, Jorge Navajas, Daniel Farré, Ramon Gavara, Núria Almendros, Isaac Novel Decellularization Method for Tissue Slices |
title | Novel Decellularization Method for Tissue Slices |
title_full | Novel Decellularization Method for Tissue Slices |
title_fullStr | Novel Decellularization Method for Tissue Slices |
title_full_unstemmed | Novel Decellularization Method for Tissue Slices |
title_short | Novel Decellularization Method for Tissue Slices |
title_sort | novel decellularization method for tissue slices |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959585/ https://www.ncbi.nlm.nih.gov/pubmed/35356779 http://dx.doi.org/10.3389/fbioe.2022.832178 |
work_keys_str_mv | AT narcisomaria noveldecellularizationmethodfortissueslices AT ulldemolinsanna noveldecellularizationmethodfortissueslices AT juniorconstanca noveldecellularizationmethodfortissueslices AT oterojorge noveldecellularizationmethodfortissueslices AT navajasdaniel noveldecellularizationmethodfortissueslices AT farreramon noveldecellularizationmethodfortissueslices AT gavaranuria noveldecellularizationmethodfortissueslices AT almendrosisaac noveldecellularizationmethodfortissueslices |