Cargando…
Residual Block Based Nested U-Type Architecture for Multi-Modal Brain Tumor Image Segmentation
Multi-modal magnetic resonance imaging (MRI) segmentation of brain tumors is a hot topic in brain tumor processing research in recent years, which can make full use of the feature information of different modalities in MRI images, so that tumors can be segmented more effectively. In this article, co...
Autores principales: | Chen, Sirui, Zhao, Shengjie, Lan, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959850/ https://www.ncbi.nlm.nih.gov/pubmed/35356052 http://dx.doi.org/10.3389/fnins.2022.832824 |
Ejemplares similares
-
Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation
por: Lu, Haoran, et al.
Publicado: (2022) -
Nested Dilation Networks for Brain Tumor Segmentation Based on Magnetic Resonance Imaging
por: Wang, Liansheng, et al.
Publicado: (2019) -
Local extreme map guided multi-modal brain image fusion
por: Zhang, Yu, et al.
Publicado: (2022) -
Multi-Layer Preprocessing and U-Net with Residual Attention Block for Retinal Blood Vessel Segmentation
por: Alsayat, Ahmed, et al.
Publicado: (2023) -
Overview of Multi-Modal Brain Tumor MR Image Segmentation
por: Zhang, Wenyin, et al.
Publicado: (2021)