Cargando…
Analysis of Few-Shot Techniques for Fungal Plant Disease Classification and Evaluation of Clustering Capabilities Over Real Datasets
Plant fungal diseases are one of the most important causes of crop yield losses. Therefore, plant disease identification algorithms have been seen as a useful tool to detect them at early stages to mitigate their effects. Although deep-learning based algorithms can achieve high detection accuracies,...
Autores principales: | Egusquiza, Itziar, Picon, Artzai, Irusta, Unai, Bereciartua-Perez, Arantza, Eggers, Till, Klukas, Christian, Aramendi, Elisabete, Navarra-Mestre, Ramon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959904/ https://www.ncbi.nlm.nih.gov/pubmed/35356111 http://dx.doi.org/10.3389/fpls.2022.813237 |
Ejemplares similares
-
Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest
por: Elola, Andoni, et al.
Publicado: (2019) -
Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia
por: Picon, Artzai, et al.
Publicado: (2019) -
A Machine Learning Model for the Prognosis of Pulseless Electrical Activity during Out-of-Hospital Cardiac Arrest
por: Urteaga, Jon, et al.
Publicado: (2021) -
Rhythm Analysis during Cardiopulmonary Resuscitation: Past, Present, and Future
por: Ruiz de Gauna, Sofia, et al.
Publicado: (2014) -
Towards the Prediction of Rearrest during Out-of-Hospital Cardiac Arrest
por: Elola, Andoni, et al.
Publicado: (2020)