Cargando…
The Effects of Moxibustion on Learning and Memory and m6A RNA Methylation in APP/PS1 Mice
OBJECTIVES: To study whether moxibustion can improve the learning and memory ability of APP/PS1 mice by reducing the pathological products Aβ and Tau protein via decreasing N6-methyladenosine (m6A). METHODS: APP/PS1 mice were randomly divided into model group (APP/PS1) and moxibustion group (APP/PS1...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959951/ https://www.ncbi.nlm.nih.gov/pubmed/35356237 http://dx.doi.org/10.1155/2022/2998301 |
Sumario: | OBJECTIVES: To study whether moxibustion can improve the learning and memory ability of APP/PS1 mice by reducing the pathological products Aβ and Tau protein via decreasing N6-methyladenosine (m6A). METHODS: APP/PS1 mice were randomly divided into model group (APP/PS1) and moxibustion group (APP/PS1+Mox). C57BL/6J mice were used as a control group (Control). Learning and memory abilities were assessed by the Morris water maze. Aβ, Tau, phosphorylated Tau (p-Tau), and YTHDF1 proteins were detected in the mouse cortex and hippocampus by immunofluorescence and western blot. Altered m6A expression levels in hippocampal and cortical tissues were measured with the m6A RNA methylation quantification assay kit. RNA transcript levels of YTHDF1, METTL3, and FTO in the hippocampus and cortex were measured by q-PCR. RESULTS: Moxibustion shortened the escape latency, increased the number of platform crossings, and increased the percentage of swimming time in the target quadrant of APP/PS1 mice. Meanwhile, moxibustion reduced the levels of Aβ, Tau, and p-Tau proteins both in the hippocampal and cortical regions of APP/PS1 mice. In addition, the total amount of m6A in the hippocampal and cortical regions of APP/PS1 mice was significantly reduced after moxibustion. The expression of YTHDF1 in the hippocampal region of APP/PS1 mice increased and that in the cortical region decreased after moxibustion treatment. CONCLUSION: Moxibustion improves the learning and memory abilities and reduces the deposition of Aβ and Tau protein pathological products in APP/PS1 mice. This may be related to the fact that moxibustion reduces the total amount of m6A and inhibits its binding enzyme YTHDF1 in the hippocampus and cortex of APP/PS1 mice. |
---|