Cargando…
Periodic Heat Stress Licenses EMSC Differentiation into Osteoblasts via YAP Signaling Pathway Activation
BACKGROUND: The repair and regeneration of large bone defects represent highly challenging tasks in bone tissue engineering. Although recent studies have shown that osteogenesis is stimulated by periodic heat stress, the thermal regulation of osteogenic differentiation in ectomesenchymal stem cells...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960005/ https://www.ncbi.nlm.nih.gov/pubmed/35355590 http://dx.doi.org/10.1155/2022/3715471 |
_version_ | 1784677291181211648 |
---|---|
author | Shi, Wentao Wang, Zhe Bian, Lu Wu, Yiqing HuiYa, Mei Zhou, Yanjun Zhang, Zhijian Wang, Qing Zhao, Peng Lu, Xiaojie |
author_facet | Shi, Wentao Wang, Zhe Bian, Lu Wu, Yiqing HuiYa, Mei Zhou, Yanjun Zhang, Zhijian Wang, Qing Zhao, Peng Lu, Xiaojie |
author_sort | Shi, Wentao |
collection | PubMed |
description | BACKGROUND: The repair and regeneration of large bone defects represent highly challenging tasks in bone tissue engineering. Although recent studies have shown that osteogenesis is stimulated by periodic heat stress, the thermal regulation of osteogenic differentiation in ectomesenchymal stem cells (EMSCs) is not well studied. METHODS AND RESULTS: In this study, the direct effects of periodic heat stress on the differentiation of EMSCs into osteoblasts were investigated. EMSCs derived from rat nasal respiratory mucosa were seeded onto culture plates, followed by 1 h of heat stress at 41°C every 7 days during osteogenic differentiation. Based on the results of the present study, periodic heating increases alkaline phosphatase (ALP) activity, upregulates osteogenic-related proteins, and promotes EMSC mineralization. In particular, increased YAP nuclear translocation and YAP knockdown inhibited osteogenic differentiation induced by heat stress. Furthermore, the expression and activity of transglutaminase 2 (TG2) were significantly increased after YAP nuclear translocation. CONCLUSION: Together, these results indicate that YAP plays a key role in regulating cellular proteostasis under stressful cellular conditions by modulating the TG2 response. |
format | Online Article Text |
id | pubmed-8960005 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-89600052022-03-29 Periodic Heat Stress Licenses EMSC Differentiation into Osteoblasts via YAP Signaling Pathway Activation Shi, Wentao Wang, Zhe Bian, Lu Wu, Yiqing HuiYa, Mei Zhou, Yanjun Zhang, Zhijian Wang, Qing Zhao, Peng Lu, Xiaojie Stem Cells Int Research Article BACKGROUND: The repair and regeneration of large bone defects represent highly challenging tasks in bone tissue engineering. Although recent studies have shown that osteogenesis is stimulated by periodic heat stress, the thermal regulation of osteogenic differentiation in ectomesenchymal stem cells (EMSCs) is not well studied. METHODS AND RESULTS: In this study, the direct effects of periodic heat stress on the differentiation of EMSCs into osteoblasts were investigated. EMSCs derived from rat nasal respiratory mucosa were seeded onto culture plates, followed by 1 h of heat stress at 41°C every 7 days during osteogenic differentiation. Based on the results of the present study, periodic heating increases alkaline phosphatase (ALP) activity, upregulates osteogenic-related proteins, and promotes EMSC mineralization. In particular, increased YAP nuclear translocation and YAP knockdown inhibited osteogenic differentiation induced by heat stress. Furthermore, the expression and activity of transglutaminase 2 (TG2) were significantly increased after YAP nuclear translocation. CONCLUSION: Together, these results indicate that YAP plays a key role in regulating cellular proteostasis under stressful cellular conditions by modulating the TG2 response. Hindawi 2022-03-18 /pmc/articles/PMC8960005/ /pubmed/35355590 http://dx.doi.org/10.1155/2022/3715471 Text en Copyright © 2022 Wentao Shi et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Shi, Wentao Wang, Zhe Bian, Lu Wu, Yiqing HuiYa, Mei Zhou, Yanjun Zhang, Zhijian Wang, Qing Zhao, Peng Lu, Xiaojie Periodic Heat Stress Licenses EMSC Differentiation into Osteoblasts via YAP Signaling Pathway Activation |
title | Periodic Heat Stress Licenses EMSC Differentiation into Osteoblasts via YAP Signaling Pathway Activation |
title_full | Periodic Heat Stress Licenses EMSC Differentiation into Osteoblasts via YAP Signaling Pathway Activation |
title_fullStr | Periodic Heat Stress Licenses EMSC Differentiation into Osteoblasts via YAP Signaling Pathway Activation |
title_full_unstemmed | Periodic Heat Stress Licenses EMSC Differentiation into Osteoblasts via YAP Signaling Pathway Activation |
title_short | Periodic Heat Stress Licenses EMSC Differentiation into Osteoblasts via YAP Signaling Pathway Activation |
title_sort | periodic heat stress licenses emsc differentiation into osteoblasts via yap signaling pathway activation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960005/ https://www.ncbi.nlm.nih.gov/pubmed/35355590 http://dx.doi.org/10.1155/2022/3715471 |
work_keys_str_mv | AT shiwentao periodicheatstresslicensesemscdifferentiationintoosteoblastsviayapsignalingpathwayactivation AT wangzhe periodicheatstresslicensesemscdifferentiationintoosteoblastsviayapsignalingpathwayactivation AT bianlu periodicheatstresslicensesemscdifferentiationintoosteoblastsviayapsignalingpathwayactivation AT wuyiqing periodicheatstresslicensesemscdifferentiationintoosteoblastsviayapsignalingpathwayactivation AT huiyamei periodicheatstresslicensesemscdifferentiationintoosteoblastsviayapsignalingpathwayactivation AT zhouyanjun periodicheatstresslicensesemscdifferentiationintoosteoblastsviayapsignalingpathwayactivation AT zhangzhijian periodicheatstresslicensesemscdifferentiationintoosteoblastsviayapsignalingpathwayactivation AT wangqing periodicheatstresslicensesemscdifferentiationintoosteoblastsviayapsignalingpathwayactivation AT zhaopeng periodicheatstresslicensesemscdifferentiationintoosteoblastsviayapsignalingpathwayactivation AT luxiaojie periodicheatstresslicensesemscdifferentiationintoosteoblastsviayapsignalingpathwayactivation |